通义千问官网
通义千问是基于的大语言模型的产品,它利用自然语言处理技术,为用户提供智能化的语音交互服务。通义千问能够回答用户的各种问题,并进行深入的分析和推荐,帮助用户解决各种生活和工作中遇到的疑问和难题。
通义千问2.5正式上线
- 模型中英文综合能力显著提升
- 模型推理能力和复杂指令理解能力显著增强,困难任务上的表现更优
- 文本理解能力提升:文本分类、信息抽取、情感分析、润色纠错等文本处理任务更稳健
- 代码能力整体提升
通义千问主要的特点包括以下几个方面:
1. 多领域知识:通过阿里大数据平台的支持和人工智能技术的运用,通义千问积累了大量的知识,涵盖了多个领域,包括医学、法律、地理、历史等。用户可以随时向通义千问提问,获得准确、实用的答案。
2. 精准分析:通义千问能够通过分析用户的问题和使用习惯,提供个性化的答案和建议。它能够根据用户的需求,在海量的数据中找到最为合适的答案,并对用户需要的信息进行分类和整理,让用户更好地理解和使用。
3. 自主学习:通义千问采用人工智能技术,能够自主学习、不断优化和改进自身的回答能力,不断提高答案的准确性和实用性。这一特点可以保证通义千问在日后的应用中,更加符合用户的需求和期望。
通义千问720亿参数模型Qwen-72B宣布开源。
至此,通义千问共开源18亿、70亿、140亿、720亿参数的4款大语言模型,以及视觉理解、音频理解两款多模态大模型,实现“全尺寸、全模态”开源。
通义千问官网入口网址:
https://qianwen.aliyun.com/
数据统计
数据评估
关于通义千问特别声明
本站智能信息网提供的通义千问都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月26日 下午10:08收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
讯飞绘文官网讯飞绘文是一个基于人工智能技术的内容创作和运营平
Kimi
Kimi月之暗面大模型,探索AI新境界,提供深度学习与自然语言处理前沿解决方案。
绘蛙AI消除
绘蛙AI消除官网绘蛙AI消除修图工具,能一键去除图片中的多余
Auto
Auto-GPT是一个实验性开源应用程序,展示了GPT-4语言模型的真正潜力,GitHub上超10万人星标。该程序由 GPT-4 驱动,将LLM大语言模型思维链接在一起,以自主实现你设定的任何目标。作为GPT-4完全自主运行的首批例子之一,Auto-GPT突破了人工智能的极限,距离AGI通用人工智能又近了一步。大家注意甄别autogpt.net不是其官方网站,agpt.co才是。
堆友AI设计大赛
堆友AI设计大赛官网: 阿里堆友出品的设计大赛平台,基于堆友...
宣小二 媒体发稿平台
宣小二官网一个融合了大量网络新闻网资源、自媒体博主和短视频达
Gemma
Gemma是什么Gemma是由谷歌DeepMind和谷歌的其他团队开发的一系列轻量级、先进的开放AI模型,基于与Gemini模型相同的技术,旨在帮助开发者和研究人员构建负责任的AI应用。Gemma模型系列包括两种权重规模的模型:Gemma 2B 和 Gemma 7B,提供预训练和指令微调版本,支持多种框架,如JAX、PyTorch和TensorFlow,以在不同设备上高效运行。6月28日,第二代模型Gemma 2已发布。Gemma的官方入口Gemma的官网主页:https://ai.google.dev/gemma?hl=zh-cnGemma的Hugging Face模型:https://huggingface.co/models?search=google/gemmaGemma的Kaggle模型地址:https://www.kaggle.com/models/google/gemma/code/Gemma的技术报告:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf官方PyTorch实现GitHub代码库:https://github.com/google/gemma_pytorchGemma的Google Colab运行地址:https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/lora_tuning.ipynbGemma的主要特性轻量级架构:Gemma模型设计为轻量级,便于在多种计算环境中运行,包括个人电脑和工作站。开放模型:Gemma模型的权重是开放的,允许用户在遵守许可协议的情况下进行商业使用和分发。预训练与指令微调:提供预训练模型和经过指令微调的版本,后者通过人类反馈强化学习(RLHF)来确保模型行为的负责任性。多框架支持:Gemma支持JAX、PyTorch和TensorFlow等主要AI框架,通过Keras 3.0提供工具链,简化了推理和监督微调(SFT)过程。安全性与可靠性:在设计时,Gemma遵循Google的AI原则,使用自动化技术过滤训练数据中的敏感信息,并进行了一系列安全评估,包括红队测试和对抗性测试。性能优化:Gemma模型针对NVIDIA GPU和Google Cloud TPUs等硬件平台进行了优化,确保在不同设备上都能实现高性能。社区支持:Google提供了Kaggle、Colab等平台的免费资源,以及Google Cloud的积分,鼓励开发者和研究人员利用Gemma进行创新和研究。跨平台兼容性:Gemma模型可以在多种设备上运行,包括笔记本电脑、台式机、物联网设备和云端,支持广泛的AI功能。负责任的AI工具包:Google还发布了Responsible Generative AI Toolkit,帮助开发者构建安全和负责任的AI应用,包括安全分类器、调试工具和应用指南。Gemma的技术要点模型架构:Gemma基于Transformer解码器构建,这是当前自然语言处理(NLP)领域最先进的模型架构之一。采用了多头注意力机制,允许模型在处理文本时同时关注多个部分。此外,Gemma还使用了旋转位置嵌入(RoPE)来代替绝对位置嵌入,以减少模型大小并提高效率。GeGLU激活函数取代了标准的ReLU非线性激活,以及在每个Transformer子层的输入和输出都进行了归一化处理。训练基础设施:Gemma模型在Google的TPUv5e上进行训练,这是一种专为机器学习设计的高性能计算平台。通过在多个Pod(芯片集群)上进行模型分片和数据复制,Gemma能够高效地利用分布式计算资源。预训练数据:Gemma模型在大量英语数据上进行预训练(2B模型大约2万亿个token的数据上预训练,而7B模型则基于6万亿个token),这些数据主要来自网络文档、数学和代码。预训练数据经过过滤,以减少不想要或不安全的内容,同时确保数据的多样性和质量。微调策略:Gemma模型通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)进行微调。这包括使用合成的文本对和人类生成的提示响应对,以及基于人类偏好数据训练的奖励模型。安全性和责任:Gemma在设计时考虑了模型的安全性和责任,包括在预训练阶段对数据进行过滤,以减少敏感信息和有害内容的风险。此外,Gemma还通过了一系列的安全性评估,包括自动化基准测试和人类评估,以确保模型在实际应用中的安全性。性能评估:Gemma在多个领域进行了广泛的性能评估,包括问答、常识推理、数学和科学问题解答以及编码任务。Gemma模型与同样规模或更大规模的开放模型进行了性能对比,在MMLU、MBPP等18个基准测试中,有11个测试结果超越了Llama-13B或Mistral-7B等模型。开放性和可访问性:Gemma模型以开源的形式发布,提供了预训练和微调后的检查点,以及推理和部署的开源代码库。这使得研究人员和开发者能够访问和利用这些先进的语言模型,推动AI领域的创新。常见问题Gemma一词的含义是什么?Gemma在拉丁语中的意思是“宝石”。Gemma是开源的吗?Gemma是开源开放的大模型,用户可在Hugging Face查看和下载其模型。Gemma模型的参数量是多少?Gemma目前提供20亿和70亿参数量的模型,后续还会推出新的变体。
智谱清言
智谱清言官网智谱清言是一款免费的全能AI助手,涵盖AI绘画、

