
HELM
HELM全称Holistic Evaluation of Language Models(语言模型整体评估)是由斯坦福大学推出的大模型评测体系,该评测方法主要包括场景、适配、指标三个模块,每次评测的运行都需要指定一个场景,一个适配模型的提示,以及一个或多个指标。它评测主要覆盖的是英语,有7个指标,包括准确率、不确定性/校准、鲁棒性、公平性、偏差、毒性、推断效率;任务包括问答、信息检索、摘要、文本分类等。
CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题。它包括:需要计算和推理的自然科学,需要知识的人文科学和社会科学,以及需要生活常识的中国驾驶规则等。此外,CMMLU中的许多任务具有中国特定的答案,可能在其他地区或语言中并不普遍适用。因此是一个完全中国化的中文测试基准。
本站智能信息网提供的CMMLU都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:53收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。