
腾讯混元大模型介绍
腾讯混元大模型是由腾讯全链路自研的通用大语言模型,拥有超千亿参数规模,预训练语料超 2 万亿 tokens,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。
值得一提的是,腾讯混元大模型是一个“从实践中来,到实践中去”的实用级大模型。当前,腾讯云、腾讯广告、腾讯游戏、腾讯金融科技、腾讯会议、腾讯文档、微信搜一搜、QQ 浏览器等超过 50 个腾讯业务和产品,已经接入腾讯混元大模型测试,并取得初步效果。
腾讯混元大模型API
- 腾讯混元大模型API控制台
- 腾讯混元大模型API说明文档(3.0)
- 腾讯混元接入小狐狸教程
腾讯混元大模型官网
- 腾讯混元助手官网:https://hunyuan.tencent.com/
- 腾讯混元助手小程序:微信中搜索“腾讯混元助手”或者扫描下方小程序码体验

- 腾讯混元公众号:微信中搜索”腾讯混元”公众号
腾讯将于9月7日正式发布混元大模型,请大家关注2023年腾讯全球数字生态大会。
腾讯全球数字生态大会
腾讯全球数字生态大会官网,报名入口网址,腾讯将公布其在人工智能最新进展!
混元AI大模型发布会视频直播
混元AI大模型的特点
全链路自研是腾讯混元大模型的首要特点。腾讯集团副总裁蒋杰介绍,腾讯混元大模型从第一个 token 开始从零训练,掌握了从模型算法到机器学习框架,再到AI基础设施的全链路自研技术。
腾讯在算法层面进行了一系列自研创新,提高了模型可靠性和成熟度。
针对大模型容易“胡言乱语”的问题,腾讯优化了预训练算法及策略,让混元大模型的幻觉相比主流开源大模型降低了 30% 至 50%;通过强化学习的方法,让模型学会识别陷阱问题;通过位置编码优化,提高了超长文的处理效果和性能;提出思维链的新策略,让大模型能够像人一样结合实际的应用场景进行推理和决策。
此外,腾讯还自研了机器学习框架 Angel,使训练速度相比业界主流框架提升 1 倍,推理速度比业界主流框架提升 1.3 倍。
得益于全链路自研技术,腾讯混元大模型能够理解上下文的含义,并且有长文记忆能力,可以流畅地进行专业领域的多轮对话。除此之外,它还能进行文学创作、文本摘要、角色扮演等内容创作,做到充分理解用户意图,并高效、准确地给出有时效性的答复。
腾讯混元大模型架构
据报道,今年5月,腾讯针对ChatGPT对话式产品成立了“混元助手(HunyuanAide)”项目组,由腾讯首席科学家、腾讯AI Lab及Robotics X实验室主任张正友博士负责。
腾讯人工智能实验室
腾讯 AI Lab – 腾讯人工智能实验室官网
腾讯AI 开放平台
腾讯AI开放平台是一个功能强大、易于使用、价格实惠的人工智能服务平台,适用于各种场景下的AI应用开发和创新。
以太极平台的基础,配合强大的底层算力与低成本的高速网络基础设施,腾讯打造了首个可在工业界海量业务场景直接落地,并投入应用的万亿NLP大模型——HunYuan-NLP 1T。混元最快仅用256卡在一天内即可完成万亿参数大模型的训练,整体训练成本仅为直接冷启动训练万亿模型的1/8。
纵观混元在腾讯应用层、模型层的布局,我们可以发现,这样的布局策略,很有可能是想以统一的平台,实现技术复用和业务降本,支持更多的场景和应用。而这样的技术复用和多场景支持,则与腾讯在互联网领域独特的生态位有着密切关系。

混元大模型应用
在2023年腾讯全球数字生态大会上,蒋杰展示了腾讯会议、腾讯文档、腾讯广告等多个业务,在接入腾讯混元大模型后的实际应用情况。
比如腾讯会议基于混元大模型打造了腾讯混元助手,只需要简单的自然语言指令,就能完成会议信息提取、内容分析等复杂任务,会后还能生成智能总结纪要。据实测,在指令理解、会中问答、会议摘要、会议待办项等多个方面,混元大模型均获得较高的用户采纳率。
“> 腾讯混元助手
基于腾讯新发布的混元大模型开发的应用
在文档处理方面,腾讯混元大模型支持数十种文本创作场景,在腾讯文档推出的智能助手功能中已有应用。同时,混元还能够一键生成标准格式文本,精通数百种Excel公式,支持自然语言生成函数,并基于表格内容生成图表,目前这些功能正在内测阶段,将在成熟后面向用户开放。
在广告业务场景,腾讯混元大模型支持智能化的广告素材创作,能够适应行业与地域特色,满足千人千面的需求,实现文字、图片、视频的自然融合。此外,基于混元大模型的能力,广告智能导购能够帮助商家在企业微信等场景,提升服务质量和服务效率。
混元大模型历史消息
3月30日,腾讯集团高级执行副总裁、云与智慧产业事业群CEO汤道生向媒体表示,腾讯正在研发类ChatGPT机器人。
腾讯在大模型领域的布局早已有之,其“混元”系列AI大模型覆盖了NLP、CV、多模态等基础大模型以及众多行业/领域大模型。这成为了腾讯构建类ChatGPT产品的坚实技术储备。
2022年5月,腾讯混元AI大模型在CLUE总排行榜、阅读理解、大规模知识图谱三个榜单同时登顶,一举打破三项纪录。

腾讯混元助手名称变更历史
数据统计
数据评估
关于腾讯混元大模型特别声明
本站智能信息网提供的腾讯混元大模型都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月26日 下午11:33收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航

HuggingFace推出的大型语言模型(LLM)

StableLM:Stability AI推出的开源的类ChatGPT大语言模型
StableLM是由Stable Diffusion背后的团队Stability AI最新推出的开源的类ChatGPT大语言模型,该模型目前处于Alpha版本,拥有的参数量分别为30亿和70亿,后续还将推出150亿到650亿参数模型。

Llama 3
Llama 3是什么Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的AI解决方案,旨在通过先进的自然语言处理技术,支持广泛的应用场景,包括但不限于编程、问题解决、翻译和对话生成。Llama 3的系列型号Llama 3目前提供了两种型号,分别为8B(80亿参数)和70B(700亿参数)的版本,这两种型号旨在满足不同层次的应用需求,为用户提供了灵活性和选择的自由度。Llama-3-8B:8B参数模型,这是一个相对较小但高效的模型,拥有80亿个参数。专为需要快速推理和较少计算资源的应用场景设计,同时保持了较高的性能标准。Llama-3-70B:70B参数模型,这是一个更大规模的模型,拥有700亿个参数。它能够处理更复杂的任务,提供更深入的语言理解和生成能力,适合对性能要求更高的应用。后续,Llama 3 还会推出 400B 参数规模的模型,目前还在训练中。Meta 还表示等完成 Llama 3 的训练,还将发布一份详细的研究论文。Llama 3的官网入口官方项目主页:https://llama.meta.com/llama3/GitHub模型权重和代码:https://github.com/meta-llama/llama3/Hugging Face模型:https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6Llama 3的改进地方参数规模:Llama 3提供了8B和70B两种参数规模的模型,相比Llama 2,参数数量的增加使得模型能够捕捉和学习更复杂的语言模式。训练数据集:Llama 3的训练数据集比Llama 2大了7倍,包含了超过15万亿个token,其中包括4倍的代码数据,这使得Llama 3在理解和生成代码方面更加出色。模型架构:Llama 3采用了更高效的分词器和分组查询注意力(Grouped Query Attention, GQA)技术,提高了模型的推理效率和处理长文本的能力。性能提升:通过改进的预训练和后训练过程,Llama 3在减少错误拒绝率、提升响应对齐和增加模型响应多样性方面取得了进步。安全性:引入了Llama Guard 2等新的信任和安全工具,以及Code Shield和CyberSec Eval 2,增强了模型的安全性和可靠性。多语言支持:Llama 3在预训练数据中加入了超过30种语言的高质量非英语数据,为未来的多语言能力打下了基础。推理和代码生成:Llama 3在推理、代码生成和指令跟随等方面展现了大幅提升的能力,使其在复杂任务处理上更加精准和高效。Llama 3的性能评估根据Meta的官方博客,经指令微调后的 Llama 3 8B 模型在MMLU、GPQA、HumanEval、GSM-8K、MATH等数据集基准测试中都优于同等级参数规模的模型(Gemma 7B、Mistral 7B),而微调后的 Llama 3 70B 在 MLLU、HumanEval、GSM-8K 等基准测试中也都优于同等规模的 Gemini Pro 1.5 和 Claude 3 Sonnet 模型。此外,Meta还开发了一套新的高质量人类评估集,包含 1800 个提示,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结。通过与Claude Sonnet、Mistral Medium和GPT-3.5等竞争模型的比较,人类评估者基于该评估集进行了偏好排名,结果显示Llama 3在真实世界场景中的性能非常出色,最低都有52.9%的胜出率。Llama 3的技术架构解码器架构:Llama 3采用了解码器(decoder-only)架构,这是一种标准的Transformer模型架构,主要用于处理自然语言生成任务。分词器和词汇量:Llama 3使用了具有128K个token的分词器,这使得模型能够更高效地编码语言,从而显著提升性能。分组查询注意力(Grouped Query Attention, GQA):为了提高推理效率,Llama 3在8B和70B模型中都采用了GQA技术。这种技术通过将注意力机制中的查询分组,减少了计算量,同时保持了模型的性能。长序列处理:Llama 3支持长达8,192个token的序列,使用掩码(masking)技术确保自注意力(self-attention)不会跨越文档边界,这对于处理长文本尤其重要。预训练数据集:Llama 3在超过15TB的token上进行了预训练,这个数据集不仅规模巨大,而且质量高,为模型提供了丰富的语言信息。多语言数据:为了支持多语言能力,Llama 3的预训练数据集包含了超过5%的非英语高质量数据,涵盖了超过30种语言。数据过滤和质量控制:Llama 3的开发团队开发了一系列数据过滤管道,包括启发式过滤器、NSFW(不适合工作场所)过滤器、语义去重方法和文本分类器,以确保训练数据的高质量。扩展性和并行化:Llama 3的训练过程中采用了数据并行化、模型并行化和流水线并行化,这些技术的应用使得模型能够高效地在大量GPU上进行训练。指令微调(Instruction Fine-Tuning):Llama 3在预训练模型的基础上,通过指令微调进一步提升了模型在特定任务上的表现,如对话和编程任务。如何使用Llama 3开发人员Meta已在GitHub、Hugging Face、Replicate上开源其Llama 3模型,开发人员可使用torchtune等工具对Llama 3进行定制和微调,以适应特定的用例和需求,感兴趣的开发者可以查看官方的入门指南并前往下载部署。官方模型下载:https://llama.meta.com/llama-downloadsGitHub地址:https://github.com/meta-llama/llama3/Hugging Face地址:https://huggingface.co/meta-llamaReplicate地址:https://replicate.com/meta普通用户不懂技术的普通用户想要体验Llama 3可以通过以下方式使用:访问Meta最新推出的Meta AI聊天助手进行体验(注:Meta.AI会锁区,只有部分国家可使用)访问Replicate提供的Chat with Llama进行体验https://llama3.replicate.dev/使用Hugging Chat(https://huggingface.co/chat/),可手动将模型切换至Llama 3

Image to Promt 图片转换提示词
Image to Promt 图片转换提示词官网快速将图片转

Cohere
Cohere是一个提供大语言模型的平台,帮助开发人员和企业构建高性能的AI产品。该平台主要提供AI驱动的搜索文本(多语言嵌入、神经搜索、搜索排名)、分类文本和生成文本等服务,可帮助企业快速部署对话式AI聊天机器人、生成式搜索引擎、文本摘要总结、增强向量检索等。5月3日,Cohere公司获2.5亿美元融资,目前估值约20亿美元,投资者包括Saleforce、Nvidia、Index Ventures等。该公司的联合创始人 Aidan Gomez 是《Attention Is All You Need》论文的作者之一,此论文提出了 GPT 等大语言模型的采用的 Transformer 架构。Cohere提供了一个Playground供用户试玩,如果你感兴趣的话可以访问试试看。另外Cohere还推出了LLM University,一个学习大语言模型的课程,可帮助你了解大型语言模型及其体系结构的基础知识。

天工AI
天工AI,前沿的天工大模型平台,汇聚AI创新技术,赋能智慧未来。

HuggingFace
AI模型开发社区

腾讯交互翻译
腾讯交互翻译是什么腾讯交互翻译是腾讯公司推出的多语言AI翻译工具,集成交互式机器翻译、神经网络机器翻译等先进技术。腾讯交互翻译支持20多种语言的互译,包括英语、日语、韩语、德语、法语等,满足不同用户的需求。支持网页版或多平台应用进行实时翻译或批量文件翻译。腾讯交互翻译具备翻译记忆融合和翻译输入法功