StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人

6个月前发布 3,535 0 0

StableVicuna 是由 Stable Diffusion 背后的 StabilityAI 推出的第一个通过基于人类反馈的强化学习(RLHF)训练的大规模开源聊天机器人。StableVicuna是Vicuna v0 13b的进一步指令微调和RLHF训练版本,它是一个指令微调的 LLaMA 130亿模型。

收录时间:
2025-04-23
StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人

StableVicuna 是由 Stable Diffusion 背后的 StabilityAI 推出的第一个通过基于人类反馈的强化学习(RLHF)训练的大规模开源聊天机器人。StableVicuna是Vicuna v0 13b的进一步指令微调和RLHF训练版本,它是一个指令微调的 LLaMA 130亿模型。

数据统计

数据评估

StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人浏览人数已经达到3,535,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人特别声明

本站智能信息网提供的StableVicuna:StabilityAI推出的第一个通过RLHF训练的大规模开源聊天机器人都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

魔搭社区:阿里达摩院推出的AI模型社区,超过300+开源AI模型

魔搭社区:阿里达摩院推出的AI模型社区,超过300+开源AI模型

魔搭社区是什么魔搭社区(ModelScope)是阿里巴巴达摩院推出的综合性的人工智能模型共享与服务平台,为构建一个开放、高效、易用的AI模型生态,为开发者、研究人员和企业用户提供一站式的模型获取、部署和应用体验。 ModelScope平台汇集了丰富的预训练模型资源,涵盖自然语言处理、计算机视觉、语音识别等多个领域。用户可以通过简单的搜索和下载操作,快速获取所需的模型,结合平台提供的工具进行微调、优化和部署。魔搭社区支持多种硬件平台,包括昇腾、GPU等,满足不同用户的需求。魔搭社区的主要功能丰富的预训练模型:提供涵盖自然语言处理、计算机视觉、语音识别、多模态等多个领域的预训练模型。模型上下文协议(MCP):推出MCP广场,上架千余款热门MCP服务,包括支付宝、MiniMax等独家首发服务。MCP为大模型对接外部数据源和工具建立了统一标准,简化了开发流程。数据集与指标:提供多种数据集和性能评估指标,方便开发者进行模型训练和优化。模型推理与部署:支持在线推理、本地部署和云端部署。用户可以通过网页界面直接上传数据获取推理结果,也可以通过SDK在本地运行模型。分布式训练与优化:提供分布式训练工具,支持多种框架(如PyTorch、TensorFlow等),提供模型压缩、量化等优化工具。调试与集成:提供简单易用的调试环境和工具,支持第三方平台集成,降低开发者使用门槛。开源与社区共建:作为一个开源平台,鼓励开发者贡献模型和代码,形成开源协作生态。开发者社区:提供交流平台,开发者可以分享经验、讨论技术问题,共同推动AI技术的发展。如何使用魔搭社区访问平台:访问魔搭社区的官方网站,注册或登录。环境准备安装 Python:确保系统中已安装 Python(推荐版本 3.8 及以上)。安装 ModelScope Python 库:通过以下命令安装 ModelScope 的 Python 库。模型下载通过命令行下载:使用 ModelScope 提供的命令行工具下载模型。通过网页界面下载:访问魔搭社区官网,在模型库中搜索并下载所需的模型。模型推理:使用 Python 脚本加载模型并进行推理。模型微调:使用 ms-swift 进行微调ms-swift 是魔搭社区提供的大模型训练和部署框架。模型部署:使用 Vllm 部署模型,Vllm 是一个高效的推理框架,支持多 GPU 分布式推理。探索更多模型和工具:访问魔搭社区官网,浏览丰富的模型库、数据集和工具。参与社区交流:加入魔搭社区的开发者社区,与其他开发者交流经验,共同推动 AI 技术的发展。魔搭社区的应用场景AI研究与教育:研究人员和教育工作者可以用ModelScope上的模型进行AI相关的研究和教学活动,提高研究效率和学习效果。企业应用开发:企业可以用ModelScope上的模型快速开发AI应用,降低研发成本,加快产品上市时间。创业项目:初创企业可以借助ModelScope上的模型资源,开发创新的AI产品和服务,验证商业模式并实现产品的快速迭代。个人项目:个人开发者可以用ModelScope上的模型实现自己的创意,开发个性化的AI应用。多模态应用:ModelScope支持多种多模态模型,例如处理文本、图像和视频的InternVL3系列模型。可以应用于智能助手、内容创作、视频生成等领域。
悟道

悟道

2021年6月,北京智源研究院(BAAI)推出了悟道1.0的后续版本悟道2.0,作为中国第一个超大规模智能模型系统。悟道是一个语言模型,旨在在人类层面的思维上超越 OpenAI 的 GPT-3 和谷歌的 LaMDA。经过4.9TB的图像和文本训练,并在9个基准上超过了最先进(SOTA)水平,悟道比任何同行都更接近于实现通用人工智能(AGI)和人类水平的思维。悟道接受了4.9 TB高质量英文和中文图像和文本的训练:1.2TB中文文本数据2.5TB中文图形数据1.2TB英文文本数据悟道是基于开源的 MoE 系统 FastMoE 进行训练的。MoE是一种机器学习技术,其工作原理如下:将预测建模任务划分为子任务,针对每个子任务训练专家(学习者)模型,开发门控模型,该门控模型基于要预测的输入来学习咨询哪个专家,并组合预测。FastMoE使悟道能够并行咨询不同的专家模型,并切换到预测结果最好的模型。例如,如果输入是英文文本,悟道将使用预测模型,该模型可以在英文文本中生成回应。

暂无评论

none
暂无评论...