
Jan(Jan.ai)是一个免费开源的本地运行大模型并进行AI聊天对话的工具,可帮助用户在本地电脑(Windows、Mac、Linux)上安装、部署、运行并使用开源版本的ChatGPT替代大模型,如LLaMa、Mistral、Phi-2等20多个模型,也支持输入自己的OpenAI API Key以运行GPT。相较于AI工具集此前介绍的Ollama,该工具提供了对话UI和API服务器,适合开发者、研究人员或AI爱好者本地体验开源的大模型。
Jan的主要功能
- 本地运行开源大模型:支持LlaMa、Mistral、Phi-2、DeepSeek、Yi等20多个模型,可手动导入也可以在模型库下载模型
- 简洁好用的聊天界面:软件界面清爽简洁、直观易用,直接在本地与开源大模型快速进行对话聊天
- 支持多个平台:Jan支持在Windows、Mac(Intel、M1/M2/M3)和Linux等操作系统运行,后续还将推出移动端APP。
- 内置API服务器:与OpenAI API兼容,可通过API获取模型信息、下载、启动、停止模型及聊天等
如何使用Jan
- 访问Jan的官网(jan.ai),选择对应的电脑操作系统版本,点击Download进行下载
- 然后安装并打开软件,在软件界面的左下角点击Download your first model
- 进入模型库Hub界面,选择你感兴趣的模型进行下载,下载完成后点击Use使用该模型
- 在对话界面输入你的描述即可与你选择的模型进行对话啦
Jan还在持续开发中,后续会支持移动端APP、创建AI助理、推理引擎、插件扩展等功能。
数据统计
数据评估
关于Jan(Jan.ai)特别声明
本站智能信息网提供的Jan(Jan.ai)都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航

百度推出的产业级知识增强大模型

悟道
2021年6月,北京智源研究院(BAAI)推出了悟道1.0的后续版本悟道2.0,作为中国第一个超大规模智能模型系统。悟道是一个语言模型,旨在在人类层面的思维上超越 OpenAI 的 GPT-3 和谷歌的 LaMDA。经过4.9TB的图像和文本训练,并在9个基准上超过了最先进(SOTA)水平,悟道比任何同行都更接近于实现通用人工智能(AGI)和人类水平的思维。悟道接受了4.9 TB高质量英文和中文图像和文本的训练:1.2TB中文文本数据2.5TB中文图形数据1.2TB英文文本数据悟道是基于开源的 MoE 系统 FastMoE 进行训练的。MoE是一种机器学习技术,其工作原理如下:将预测建模任务划分为子任务,针对每个子任务训练专家(学习者)模型,开发门控模型,该门控模型基于要预测的输入来学习咨询哪个专家,并组合预测。FastMoE使悟道能够并行咨询不同的专家模型,并切换到预测结果最好的模型。例如,如果输入是英文文本,悟道将使用预测模型,该模型可以在英文文本中生成回应。

魔搭社区:阿里达摩院推出的AI模型社区,超过300+开源AI模型
魔搭社区是什么魔搭社区(ModelScope)是阿里巴巴达摩院推出的综合性的人工智能模型共享与服务平台,为构建一个开放、高效、易用的AI模型生态,为开发者、研究人员和企业用户提供一站式的模型获取、部署和应用体验。 ModelScope平台汇集了丰富的预训练模型资源,涵盖自然语言处理、计算机视觉、语音识别等多个领域。用户可以通过简单的搜索和下载操作,快速获取所需的模型,结合平台提供的工具进行微调、优化和部署。魔搭社区支持多种硬件平台,包括昇腾、GPU等,满足不同用户的需求。魔搭社区的主要功能丰富的预训练模型:提供涵盖自然语言处理、计算机视觉、语音识别、多模态等多个领域的预训练模型。模型上下文协议(MCP):推出MCP广场,上架千余款热门MCP服务,包括支付宝、MiniMax等独家首发服务。MCP为大模型对接外部数据源和工具建立了统一标准,简化了开发流程。数据集与指标:提供多种数据集和性能评估指标,方便开发者进行模型训练和优化。模型推理与部署:支持在线推理、本地部署和云端部署。用户可以通过网页界面直接上传数据获取推理结果,也可以通过SDK在本地运行模型。分布式训练与优化:提供分布式训练工具,支持多种框架(如PyTorch、TensorFlow等),提供模型压缩、量化等优化工具。调试与集成:提供简单易用的调试环境和工具,支持第三方平台集成,降低开发者使用门槛。开源与社区共建:作为一个开源平台,鼓励开发者贡献模型和代码,形成开源协作生态。开发者社区:提供交流平台,开发者可以分享经验、讨论技术问题,共同推动AI技术的发展。如何使用魔搭社区访问平台:访问魔搭社区的官方网站,注册或登录。环境准备安装 Python:确保系统中已安装 Python(推荐版本 3.8 及以上)。安装 ModelScope Python 库:通过以下命令安装 ModelScope 的 Python 库。模型下载通过命令行下载:使用 ModelScope 提供的命令行工具下载模型。通过网页界面下载:访问魔搭社区官网,在模型库中搜索并下载所需的模型。模型推理:使用 Python 脚本加载模型并进行推理。模型微调:使用 ms-swift 进行微调ms-swift 是魔搭社区提供的大模型训练和部署框架。模型部署:使用 Vllm 部署模型,Vllm 是一个高效的推理框架,支持多 GPU 分布式推理。探索更多模型和工具:访问魔搭社区官网,浏览丰富的模型库、数据集和工具。参与社区交流:加入魔搭社区的开发者社区,与其他开发者交流经验,共同推动 AI 技术的发展。魔搭社区的应用场景AI研究与教育:研究人员和教育工作者可以用ModelScope上的模型进行AI相关的研究和教学活动,提高研究效率和学习效果。企业应用开发:企业可以用ModelScope上的模型快速开发AI应用,降低研发成本,加快产品上市时间。创业项目:初创企业可以借助ModelScope上的模型资源,开发创新的AI产品和服务,验证商业模式并实现产品的快速迭代。个人项目:个人开发者可以用ModelScope上的模型实现自己的创意,开发个性化的AI应用。多模态应用:ModelScope支持多种多模态模型,例如处理文本、图像和视频的InternVL3系列模型。可以应用于智能助手、内容创作、视频生成等领域。

MiracleVision 奇想智能
MiracleVision奇想智能是什么MiracleVision奇想智能是由美图秀秀公司推出的自研AI视觉大模型,不仅具备高度的美学导向和图像处理能力,还能够广泛地应用于多个行业,提高工作流效率。同时,它还提供了简单易用的AI视觉创作工具,使用户能够快速进行图像的创作和编辑。最新的MiracleVision 4.0支持AI图片生成、AI设计排版和AI视频生成等能力。MiracleVision奇想智能的主要能力AI图片生成,支持文生图和图生图,输入文字或上传图像即可创作图片,提供多种风格、参数调整、图片尺寸、精准画面控制等AI智能设计,包括矢量图形、文字特效、智能分层和智能排版,可以满足AI设计的基础需求AI视频生成,提供文生视频、图生视频、视频运镜、视频生视频四大功能,让奇思妙想动起来视觉模型商店,平台提供丰富的视觉模型,从经典复古到现代潮流、从超现实幻想到极简抽象,用户可以任意选择创造惊艳的视觉效果MiracleVision奇想智能的适用行业电商行业:从涂鸦生成线稿、线稿上色、商品图、模特试穿图,再到电商物料输出,全程可通过MiracleVision实现。游戏制作:包揽场景设计、角色设计、道具设计、UI图标、宣发物料等流程,拓宽设计师想象空间的同时助力游戏行业降本。影视行业:充分满足概念场景设计、分镜设计、人物造型、道具设计、宣发物料的效果要求,极大提升影视行业设计环节的效率。广告设计:覆盖创意脑暴、创意深化、平面排版、多尺寸延展、线下投放预览的全工作流,助力客户在广告物料制作环节提效。动漫卡通:打通了概念设计、故事板生成、线稿上色、动漫补帧、视频转动漫等流程,支持创意到物料成品的快速落地。

Codex
OpenAI旗下AI代码生成训练模型

Llama 3
Llama 3是什么Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的AI解决方案,旨在通过先进的自然语言处理技术,支持广泛的应用场景,包括但不限于编程、问题解决、翻译和对话生成。Llama 3的系列型号Llama 3目前提供了两种型号,分别为8B(80亿参数)和70B(700亿参数)的版本,这两种型号旨在满足不同层次的应用需求,为用户提供了灵活性和选择的自由度。Llama-3-8B:8B参数模型,这是一个相对较小但高效的模型,拥有80亿个参数。专为需要快速推理和较少计算资源的应用场景设计,同时保持了较高的性能标准。Llama-3-70B:70B参数模型,这是一个更大规模的模型,拥有700亿个参数。它能够处理更复杂的任务,提供更深入的语言理解和生成能力,适合对性能要求更高的应用。后续,Llama 3 还会推出 400B 参数规模的模型,目前还在训练中。Meta 还表示等完成 Llama 3 的训练,还将发布一份详细的研究论文。Llama 3的官网入口官方项目主页:https://llama.meta.com/llama3/GitHub模型权重和代码:https://github.com/meta-llama/llama3/Hugging Face模型:https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6Llama 3的改进地方参数规模:Llama 3提供了8B和70B两种参数规模的模型,相比Llama 2,参数数量的增加使得模型能够捕捉和学习更复杂的语言模式。训练数据集:Llama 3的训练数据集比Llama 2大了7倍,包含了超过15万亿个token,其中包括4倍的代码数据,这使得Llama 3在理解和生成代码方面更加出色。模型架构:Llama 3采用了更高效的分词器和分组查询注意力(Grouped Query Attention, GQA)技术,提高了模型的推理效率和处理长文本的能力。性能提升:通过改进的预训练和后训练过程,Llama 3在减少错误拒绝率、提升响应对齐和增加模型响应多样性方面取得了进步。安全性:引入了Llama Guard 2等新的信任和安全工具,以及Code Shield和CyberSec Eval 2,增强了模型的安全性和可靠性。多语言支持:Llama 3在预训练数据中加入了超过30种语言的高质量非英语数据,为未来的多语言能力打下了基础。推理和代码生成:Llama 3在推理、代码生成和指令跟随等方面展现了大幅提升的能力,使其在复杂任务处理上更加精准和高效。Llama 3的性能评估根据Meta的官方博客,经指令微调后的 Llama 3 8B 模型在MMLU、GPQA、HumanEval、GSM-8K、MATH等数据集基准测试中都优于同等级参数规模的模型(Gemma 7B、Mistral 7B),而微调后的 Llama 3 70B 在 MLLU、HumanEval、GSM-8K 等基准测试中也都优于同等规模的 Gemini Pro 1.5 和 Claude 3 Sonnet 模型。此外,Meta还开发了一套新的高质量人类评估集,包含 1800 个提示,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结。通过与Claude Sonnet、Mistral Medium和GPT-3.5等竞争模型的比较,人类评估者基于该评估集进行了偏好排名,结果显示Llama 3在真实世界场景中的性能非常出色,最低都有52.9%的胜出率。Llama 3的技术架构解码器架构:Llama 3采用了解码器(decoder-only)架构,这是一种标准的Transformer模型架构,主要用于处理自然语言生成任务。分词器和词汇量:Llama 3使用了具有128K个token的分词器,这使得模型能够更高效地编码语言,从而显著提升性能。分组查询注意力(Grouped Query Attention, GQA):为了提高推理效率,Llama 3在8B和70B模型中都采用了GQA技术。这种技术通过将注意力机制中的查询分组,减少了计算量,同时保持了模型的性能。长序列处理:Llama 3支持长达8,192个token的序列,使用掩码(masking)技术确保自注意力(self-attention)不会跨越文档边界,这对于处理长文本尤其重要。预训练数据集:Llama 3在超过15TB的token上进行了预训练,这个数据集不仅规模巨大,而且质量高,为模型提供了丰富的语言信息。多语言数据:为了支持多语言能力,Llama 3的预训练数据集包含了超过5%的非英语高质量数据,涵盖了超过30种语言。数据过滤和质量控制:Llama 3的开发团队开发了一系列数据过滤管道,包括启发式过滤器、NSFW(不适合工作场所)过滤器、语义去重方法和文本分类器,以确保训练数据的高质量。扩展性和并行化:Llama 3的训练过程中采用了数据并行化、模型并行化和流水线并行化,这些技术的应用使得模型能够高效地在大量GPU上进行训练。指令微调(Instruction Fine-Tuning):Llama 3在预训练模型的基础上,通过指令微调进一步提升了模型在特定任务上的表现,如对话和编程任务。如何使用Llama 3开发人员Meta已在GitHub、Hugging Face、Replicate上开源其Llama 3模型,开发人员可使用torchtune等工具对Llama 3进行定制和微调,以适应特定的用例和需求,感兴趣的开发者可以查看官方的入门指南并前往下载部署。官方模型下载:https://llama.meta.com/llama-downloadsGitHub地址:https://github.com/meta-llama/llama3/Hugging Face地址:https://huggingface.co/meta-llamaReplicate地址:https://replicate.com/meta普通用户不懂技术的普通用户想要体验Llama 3可以通过以下方式使用:访问Meta最新推出的Meta AI聊天助手进行体验(注:Meta.AI会锁区,只有部分国家可使用)访问Replicate提供的Chat with Llama进行体验https://llama3.replicate.dev/使用Hugging Chat(https://huggingface.co/chat/),可手动将模型切换至Llama 3

Ollama
Ollama是一个用于在本地计算机上运行大型语言模型的命令行工具,允许用户下载并本地运行像Llama 2、Code Llama和其他模型,并支持自定义和创建自己的模型。该免费开源的项目,目前支持macOS和Linux操作系统,未来还将支持Windows系统。此外,Ollama还提供了官方的Docker镜像,由此使用Docker容器部署大型语言模型变得更加简单,确保所有与这些模型的交互都在本地进行,无需将私有数据发送到第三方服务。Ollama在macOS和Linux上支持GPU加速,并提供了简单的命令行界面(CLI)以及用于与应用程序交互的REST API。该工具对于需要在本地机器上运行和实验大语言模型的开发人员或研究人员来说特别有用,无需依赖外部云服务。Ollama安装包获取获取Ollama安装包,扫码关注回复:OllamaOllama支持的模型Ollma提供一个模型库,用户可以自行选择安装想要运行的模型,目前支持40+的模型,还在持续增加中,以下是可以下载的开源模型示例:模型参数大小文件大小下载运行命令DeepSeek-R11.5B、7B、14B、32B等12-320GBollama run deepseek-r1Neural Chat7B4.1GBollama run neural-chatStarling7B4.1GBollama run starling-lmMistral7B4.1GBollama run mistralLlama 27B3.8GBollama run llama2Code Llama7B3.8GBollama run codellamaLlama 2 Uncensored7B3.8GBollama run llama2-uncensoredLlama 2 13B13B7.3GBollama run llama2:13bLlama 2 70B70B39GBollama run llama2:70bOrca Mini3B1.9GBollama run orca-miniVicuna7B3.8GBollama run vicuna

Gradio
Gradio是一个开源的Python库,用于构建演示机器学习或数据科学,以及web应用程序。你可以使用Gradio基于自己的机器学习模型或数据科学工作流快速创建一个漂亮的用户界面,让用户可以尝试拖放他们自己的图像、输入文本、录制他们自己的声音,并通过浏览器与你的演示程序进行交互。Google、HuggingFace、亚马逊、Meta、思科、VMware等公司都在使用。Gradio适用于:向客户/合伙人/用户/学生演示您的机器学习模型。通过自动共享链接快速部署您的模型,并获得模型性能反馈。在开发过程中使用内置的操作和解释工具交互式地调试模型。
暂无评论...