SiliconFlow(硅基流动)

1个月前发布 1,165 0 0

SiliconFlow是什么SiliconFlow(硅基流动)是生成式AI计算基础设施平台。SiliconFlow提供包括SiliconLLM大模型推理引擎、OneDiff高性能文生图/视频加速库,及SiliconCloud模型云服务平台等产品,降低AI模型部署和推理成本,提升用户体验。SiliconFlow提供快速高效的GenAI推理软...

收录时间:
2025-04-23
SiliconFlow(硅基流动)SiliconFlow(硅基流动)

SiliconFlow是什么

SiliconFlow(硅基流动)是生成式AI计算基础设施平台。SiliconFlow提供包括SiliconLLM大模型推理引擎、OneDiff高性能文生图/视频加速库,及SiliconCloud模型云服务平台等产品,降低AI模型部署和推理成本,提升用户体验。SiliconFlow提供快速高效的GenAI推理软件栈,提高应用开发效率并降低成本。SiliconFlow以顶尖的AI Infra技术能力,助力企业和开发者快速实现AI应用开发,推动AI技术的商业化和产业创新。

SiliconFlow的主要功能

  • GenAI推理软件栈:提供快速高效的软件栈,开发和部署生成式人工智能应用,降低开发和使用成本。
  • LLM推理能力:提供低时延、高吞吐的大语言模型推理服务,支持复杂的自然语言处理任务。
  • 快速图像生成能力:提供行业验证的快速图像生成能力,支持文生图和图生图等多种图像生成模型。
  • 云服务:提供易于上手的GenAI云服务,用户能快速开始使用AI服务而无需复杂的设置。
  • 模型集成:集成多种开源大语言模型和图片生成模型,用户能根据需要选择和切换不同的模型。
  • API工厂:提供API接口,方便自定义和调用第三方API,实现个性化的AI应用开发。

如何使用SiliconFlow

  • 访问官方网站:访问SiliconFlow官网。
  • 注册账户:按照提示完成注册和登录。
  • 了解服务和文档:浏览网站提供的服务介绍和文档,了解不同模型的功能和使用场景。
  • 选择模型:根据应用需求,选择合适的AI模型,如DeepSeek V2.5模型。
  • 获取API接口:获取API接口信息,包括API的URL、请求方法、参数等。
  • 集成API:将API集成到应用中。编写代码,发送请求到SiliconFlow的服务器,并处理返回的数据。
  • 开发和测试:在本地环境中开发应用,并进行测试。
  • 部署应用:将经过测试的应用部署到服务器或云平台。

数据统计

数据评估

SiliconFlow(硅基流动)浏览人数已经达到1,165,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:SiliconFlow(硅基流动)的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找SiliconFlow(硅基流动)的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于SiliconFlow(硅基流动)特别声明

本站智能信息网提供的SiliconFlow(硅基流动)都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

Label Studio

Label Studio

Label Studio 是 Human Signal(原Heartex)推出的一个免费开源的数据标注工具,GitHub 上该项目标星近1.4万,可帮助开发人员微调大语言模型、准备训练数据或验证 AI 模型。Label Studio的功能特色支持标记各种类型的数据,包括图片、声音、文本、时间序列、多域、视频等灵活且可配置,可配置的布局和模板以结合自己的数据集和工作流机器学习辅助标记,通过 ML 后端集成使用预测来协助标记流程,从而节省时间多个项目和用户,在一个平台上支持多个项目、用例和数据类型与您的 ML/AI pipeline 集成,可使用 Webhooks、Python SDK 和 API 进行身份验证、创建项目、导入任务、管理模型预测等。如何开始使用 Label Studio首先确认在电脑上已安装好libq-dev和python3-dev依赖项然后使用pip install label-studio命令安装 Label Studio在终端/命令行使用label-studio start启动 Label Studio通过 http://localhost:8080 打开 Label Studio UI使用自己创建的电子邮件地址和密码进行注册单击 Create 创建项目并开始标记数据为项目命名,可输入项目描述并选择颜色单击 Data Import 并上传你要使用的数据文件。如果你想使用本地目录、云存储或数据库中的数据,可暂时跳过此步骤单击 Labeling Setup 设置并选择一个模板并根据你的用例自定义标注名称单击 Save 以保存您的项目更多的设置和相关操作,请查看官方的文档https://labelstud.io/guide/get_started.html
SkyAgents

SkyAgents

SkyAgents是什么SkyAgents 是昆仑万维推出的 AI Agent 开发平台,基于昆仑万维的「天工大模型」,具备自主学习和独立思考的能力。用户可以通过自然语言和简单的操作,无需编码,快速构建个性化的 AI Agents,完成包括行业研究、单据填写、商标设计等在内的多种私人定制需求。企业用户也可以将 SkyAgents 能力拼装成企业 IT、智能客服、企业培训等个性化应用,支持一键服务部署。SkyAgents 的特点包括模块化任务处理、个性化定制、第三方工具调用等,降低大模型技术的应用门槛,推动 AI 技术的广泛应用。SkyAgents的主要功能零代码构建 AI Agents:SkyAgents 支持用户通过自然语言和简单的操作来构建 AI Agents,无需编程知识,非专业用户也能轻松上手。模块化任务处理:平台将 AI 任务进行了高度模块化,用户可以将不同任务分解为多个模块,通过操作系统模块的方式实现执行。个性化定制:用户可以根据自己的需求进行个性化定制,无论是个人用户还是企业用户,可以通过简单的自然语言操作快速部署属于自己的 AI 助手。企业级应用与一键部署:企业用户可以将 SkyAgents 的能力按需拼装成企业 IT、智能客服、企业培训、HR、法律顾问等个性化的应用,支持一键服务部署。知识库构建与大规模数据导入:SkyAgents 支持导入多种格式和来源的数据和知识,为 AI Agents 提供更全面、更准确的信息支持。第三方工具调用:平台支持第三方工具的调用,使 AI Agents 可以轻松调用各类工具,如票务平台、电子支付等,为用户提供更加便捷的服务。个性化 AI Agents 一键分享:用户可以轻松创建自己的 AI 伴侣、有缘机伴或暖心家园等个性化应用,通过链接的方式分享给其他人。智能对话与信息处理:SkyAgents 提供智能对话模块,可以通过大语言模型进行处理并回复给用户指定内容。同时,包括信息加工、信息提取、信息分类等模块,实现复杂的信息处理任务。高性能大模型支持:SkyAgents 基于昆仑万维的天工大模型,具备自主学习和独立思考能力,能理解用户指令,自主分析环境,做出合理的决策和行动。如何使用SkyAgents访问平台:打开浏览器,访问 SkyAgents 的官方网站:天工 AI 助手。注册/登录:新用户,需要注册一个账户。点击“短信登录”或“账号登录”,按照提示完成注册流程。已经注册,直接使用账号和密码登录。创建新的 AI Agent:登录后,看到创建新 Agent 的入口。点击创建新 Agent,进入构建页面。选择模板或自定义:SkyAgents 提供了多种示例模板,可以选择一个适合需求的模板快速开始。如果有特定的需求,可以选择自定义模块来构建 Agent。配置 Agent:在构建页面,可以通过拖拽和配置模块来设计 Agent 的工作流程。设置必要的参数,如对话模型选择、温度(控制回复的创意性)、回复字数上限等。知识库配置:如果Agent需要使用知识库,可配置知识库相似度和单次搜索上限,控制搜索结果的相关性和数量。模块排布与设计:按照信息流转的顺序进行模块排布,确保 Agents 顺利运行。进行多次调试以满足需求,注意模块的必填信息与核心配置。测试 Agent:在构建完成后,测试 Agent 确保按照预期工作。根据测试结果调整配置和参数,优化 Agent 性能。发布和使用:Agent 测试无误,立即发布,可以将 Agent 一键分享给其他人。SkyAgents的应用场景客户服务:用SkyAgents构建智能客服机器人,自动回答用户的常见问题,提高客户满意度和服务质量。个人助理:创建个人助理 Agent,帮助用户管理日程、提醒重要事件、搜索信息等,提高个人效率。企业自动化:在企业中,SkyAgents可以用来自动化各种工作流程,如订单处理、库存管理、数据分析等,减少人工干预,提高工作效率。教育和培训:开发教育 Agent,提供个性化的学习建议、课程内容和学习资源,增强学习体验。市场研究:用SkyAgents收集和分析市场数据,生成行业报告,帮助企业做出更明智的商业决策。内容创作:用SkyAgents生成文章、设计草图、创作音乐等,辅助创意工作。
扣子Coze

扣子Coze

Coze是字节跳动推出的零代码 AI 应用开发平台,可以理解为字节跳动版的GPTs。无论用户是否有编程经验,都可以通过该平台快速创建各种类型的聊天机器人、智能体、AI应用和插件,并将其部署在社交平台和即时聊天应用程序中,如Discord、WhatsApp、Twitter、飞书、微信公众号、豆包等。目前Coze平台上拥有海量AI智能体,图文、音视频生成等各个领域全覆盖,完全免费使用。Coze国际版(coze.com)提供的是基于OpenAI GPT-4和GPT-3.5的API来创建和使用AI聊天机器人,并未使用自研的云雀大模型。如同此前推出的聊天机器人豆包国际版为Cici,字节也推出了一个国内版本的Coze扣子(coze.cn),采用了豆包大模型,允许用户自主创建自定义聊天机器人。2025年4月18日,字节跳动推出通用型 AI Agent,集成MCP扩展插件 :扣子空间Coze的主要功能丰富的插件工具:该平台目前包含 60 多个不同的插件,包括新闻阅读、旅行计划、生产力工具、图像理解 API 和多模态模型知识库调取和管理:Coze提供易于使用的知识库功能,使 AI 能够与用户自己的数据(如PDF、网页文本)进行交互。可以存储和管理知识中的数据长期记忆能力:提供便捷的数据库存储能力,可以让 AI 机器人持久记住对话中的关键参数或内容定时计划任务:通过计划任务功能,用户可以使用自然语言轻松创建复杂的任务,创建好的机器人会准时发送相应的消息内容。工作流程自动化:轻松创建一个工作流程将创意想法转换为机器人技能,如收集电影评论、起草行业研究报告等预览和调试:机器人开发完成后,可以发送消息来查看机器人的响应,并根据知识搜索结果和工具响应来排查问题如何使用Coze创建机器人访问Coze的官网(coze.cn),点击Get started登录/注册账号选择侧边栏的Bots菜单,点击Create bot,然后添加机器人Logo、名称、描述信息然后在Persona & Prompt输入框中输入机器人角色和提示词,右侧可预览和调试输出信息测试无误后可点击右上角的Publish发布创建好的机器人Coze的适用人群开发人员:专注于为特定任务调整AI模型和提示词,而不是花费大量时间进行初始开发企业公司:通过将AI机器人集成到内部程序如客户支持系统、内容创作工具和推荐引擎中,开发创新的应用和服务研究人员:利用该平台作为实验工具进行各种研究任务,探索自然语言生成和理解AI爱好者:免费的GPT API,创建自定义机器人用于日常生活、学习和工作中常见问题Coze支持哪些大模型?Coze国际版目前支持通过GPT-3.5和GPT-4模型来构建AI机器人,国内版基于豆包大模型。Coze是免费的吗?Coze目前是免费向用户开放的,同时提供了部分增值服务。Coze创建的机器人可以发布到哪些平台?Coze目前支持将创建好的机器人发布到Discord和Cici,后续将支持WhatsApp和Twitter。
MLX

MLX

MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。MLX的主要功能熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。多设备:可以在任何支持的设备(CPU 和 GPU)上运行。统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。
LangChain:开发由语言模型驱动的应用程序的框架

LangChain:开发由语言模型驱动的应用程序的框架

大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。

暂无评论

none
暂无评论...