言犀智能体平台 言犀智能体平台是什么言犀智能体平台是京东推出的一站式AI智能体开发平台,用户无论有无编程基础,都能快速构建基于AI模型的智能体,处理问答到复杂业务逻辑。平台集成了多个大模型,提供算法库和工具,支持行业应用快速落地。目前已有超过3300个智能体在京东内部活跃,沉淀了100多个行业解决方案模板。言犀智能体平台的主要功能接入大模型:平台已接入数十个大模型,支持用户根据业务需求选择不同模型。低成本快速搭建:无论用户是否有编程基础,都可以快速搭建基于AI模型的智能体。行业解决方案模板:平台沉淀了100多个行业解决方案模板,支持行业应用快速落地。算法库及工具库:通过插件能力,平台提供上千种算法和工具能力,如数据分析、NL2SQL等。如何使用言犀智能体平台注册与登录:用户需要访问京东云言犀智能体平台的官方网站,注册账号并登录(yanxi.jd)。选择智能体模板:平台提供了多种行业解决方案模板,用户可以根据自己的业务需求选择合适的模板作为起点。配置智能体:用户可以对选定的智能体模板进行配置,包括但不限于设置智能体的名称、功能、交互逻辑等。接入大模型:根据业务需求,用户可以在平台中选择和接入不同的大模型,如言犀大模型、GPT等。知识库接入:使用Advance RAG技术,用户可以简单配置实现结构化和非结构化数据的接入,增强智能体的知识库。算法库和工具库应用:用户可以在智能体中运用平台提供的算法和工具能力,如数据分析、NL2SQL等。工作流编排:通过工作流对智能体的插件和大模型能力进行编排组合,指导智能体按照既定思路行动。智能数据分析:利用平台的数据分析能力,用户可以通过自然语言查询和分析业务数据。测试与优化:在智能体搭建完成后,用户需要进行测试,根据测试结果对智能体进行优化和调整。部署与应用:测试无误后,用户可以将智能体部署到实际业务场景中,开始使用智能体处理业务问题。
昇思MindSpore:华为开源自研AI深度学习框架 昇思MindSpore是由华为自研的一种适用于端边云场景的新型开源深度学习训练/推理框架,MindSpore提供了友好的设计和高效的执行,旨在提升数据科学家和算法工程师的开发体验,并为Ascend AI处理器提供原生支持,以及软硬件协同优化。
Lightning AI: 快速训练、部署和开发人工智能产品的深度学习框架,由Pytorch Lightning团队推出 Lightning AI是一个构建模型和构建/发布Lightning Apps(ML工作流模板)的平台,由Pytorch Lightning团队推出——一个快速训练、部署和开发人工智能产品的深度学习框架。
Caffe:UC伯克利研究推出的深度学习框架 Caffe(Convolutional Architecture for Fast Feature Embedding)(快速特征嵌入的卷积架构)是一个开源的深度学习框架,最初由加州大学伯克利分校的Yangqing Jia开发。2017年4月,Facebook发布了Caffe2,其中包含了递归神经网络(RNN)等新功能。2018年3月底,Caffe2被并入PyTorch。
魔乐社区 魔乐社区是什么魔乐社区(Modelers)是天翼云与华为联合推出的AI开发者社区,提供TDMA(工具链、数据集、模型、应用)的托管展示服务和支撑系统。魔乐社区汇聚AI产业链资源,依托理事会成员单位,吸引开发者共同推动AI发展,解决行业难题,促进生态繁荣。社区提供免费算力,方便用户体验AI模型和应用效果。魔乐社区的主要功能模型托管与管理:提供模型库,用户能托管和分享用于自然语言处理、视觉和音频任务的AI模型。数据集托管:托管用在各种AI任务的数据集,包括翻译、语音识别和图像分类等,供训练、评估和测试使用。体验空间:提供机器学习和深度学习算法的应用案例,支持用户在浏览器中直接体验模型的交互式应用程序。Git仓库服务:托管基于Git的仓库,支持用户和组织协作开发模型和代码。工具套件集成:集成openMind Library和openMind Hub Client等工具套件,方便模型开发和管理。如何使用魔乐社区注册和登录:访问魔乐社区官方网站。按照提示完成登录和注册。 获取模型访问模型库,获取平台上所有公开的模型。根据模型标签或任务筛选所需的模型。以PyTorch-NPU/qwen1.5_7b_chat模型为例,筛选或搜索找到模型。点击模型卡片,进入模型详情页,查看模型介绍和操作指导。根据模型详情页的指引,在线体验模型效果或下载模型文件。参考环境安装文档进行详细安装步骤。浏览和使用更多社区资源数据集:访问和下载用于AI训练的数据集。体验空间:用社区提供的在线环境进行模型测试和应用开发。参与社区活动课程和研讨:参与社区提供的课程和研讨交流。竞赛和挑战:参加社区举办的AI竞赛和巅峰挑战。使用工具链:安装和使用社区提供的工具链,进行模型开发和推理。贡献和分享:分享模型和应用:在社区中分享自己的AI模型和应用。反馈和建议:基于社区的帮助中心提供反馈和建议。魔乐社区的应用场景智能客服系统:开发能理解用户查询,提供即时响应的聊天机器人。自动驾驶汽车:基于计算机视觉技术识别道路标志、行人和障碍物,提高驾驶安全性。健康监测应用:分析穿戴设备收集的数据,监测用户健康状况并提供健康建议。个性化推荐系统:在电商网站或流媒体服务中,根据用户行为和偏好推荐商品或内容。智能语音助手:创建能理解和执行语音命令的虚拟助手,如控制智能家居设备。
DL4J:开源的使用JVM部署和训练深度学习模型的套件 Deeplearning4j是为数不多的以Java虚拟机(JVM)为目标,以Java原生编写的机器学习框架之一。该框架由位于旧金山的一组机器学习开发人员开发,并由初创公司Skymind提供商业支持。Deeplearning4j于2017年10月捐赠给了Eclipse基金会。该库与Clojure和Scala兼容。对于集群和分布式训练,Deeplearning4j与Apache Spark和Apache Hadoop集成。它还与NVIDIA CUDA运行时集成,可在多个GPU之间执行GPU操作和分布式训练。Deeplearning4j包括一个使用ND4J的n维数组类,该类允许在Java和Scala中进行科学计算,与NumPy提供给Python的函数类似。它可以有效地用作执行线性代数和矩阵操作的库,用于训练和推理。Deeplearning4j可以用于训练模型,这些模型可以执行图像分类、对象检测、图像分割、自然语言处理和时间序列预测。