大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。
LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:
- 📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。
- 🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。
- 📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。
- 🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。
- 🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。
- 🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
数据统计
数据评估
关于LangChain:开发由语言模型驱动的应用程序的框架特别声明
本站智能信息网提供的LangChain:开发由语言模型驱动的应用程序的框架都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
通义灵码,阿里云推出的AI编程工具,助力开发者高效构建智能应用,加速AI创新。
Vercel AI SDK
Vercel AI SDK是前端网站开发和托管平台及Next.js开发团队「Vercel」推出的,用于快速构建AI聊天机器人网站应用程序的开发套件,可以帮助开发人员使用JavaScript和TypeScript构建对话式的AI用户界面。Vercel AI SDK的特性支持React/Next.js、Svelte/SvelteKit和Vue/Nuxt等前端框架,以及Node.js、Serverless和Edge Runtime内置各种AI模型的适配器,支持LangChain、OpenAI、Anthropic和Hugging Face等提供的大语言模型提供交互式在线提示playground(sdk.vercel.ai),其中包含20个开源和云LLM。可以实时展示不同对话模型的聊天界面,并且可以快速生成代码。提供多个AI聊天机器人的模板和示例,你可以克隆/复制Vercel提供的基于不同框架和模型开发的AI聊天机器人的初始模板如何使用Vercel AI SDK前提条件需要在电脑上安装Node.js 18+版本,如果要开发基于OpenAI的GPT聊天机器人,需要获得OpenAI API密钥使用Next.js(pnpm dlx create-next-app my-ai-app)或者Svelte(pnpm create svelte@latest my-ai-app)等框架创建一个全新的项目,并定位到创建好的目录(cd my-ai-app)安装依赖项,pnpm install ai openai-edge配置 OpenAI API 密钥,.env.local在项目根目录中创建一个文件并添加您的 OpenAI API 密钥创建API路由并连接UI,完成后使用pnpm run dev运行启动应用程序
Label Studio
Label Studio 是 Human Signal(原Heartex)推出的一个免费开源的数据标注工具,GitHub 上该项目标星近1.4万,可帮助开发人员微调大语言模型、准备训练数据或验证 AI 模型。Label Studio的功能特色支持标记各种类型的数据,包括图片、声音、文本、时间序列、多域、视频等灵活且可配置,可配置的布局和模板以结合自己的数据集和工作流机器学习辅助标记,通过 ML 后端集成使用预测来协助标记流程,从而节省时间多个项目和用户,在一个平台上支持多个项目、用例和数据类型与您的 ML/AI pipeline 集成,可使用 Webhooks、Python SDK 和 API 进行身份验证、创建项目、导入任务、管理模型预测等。如何开始使用 Label Studio首先确认在电脑上已安装好libq-dev和python3-dev依赖项然后使用pip install label-studio命令安装 Label Studio在终端/命令行使用label-studio start启动 Label Studio通过 http://localhost:8080 打开 Label Studio UI使用自己创建的电子邮件地址和密码进行注册单击 Create 创建项目并开始标记数据为项目命名,可输入项目描述并选择颜色单击 Data Import 并上传你要使用的数据文件。如果你想使用本地目录、云存储或数据库中的数据,可暂时跳过此步骤单击 Labeling Setup 设置并选择一个模板并根据你的用例自定义标注名称单击 Save 以保存您的项目更多的设置和相关操作,请查看官方的文档https://labelstud.io/guide/get_started.html
Apache MXNet
免费开源的深度学习框架
PyTorch
开源机器学习框架
Firebase Studio
秒建AI应用,全栈 AI 工作区,Firebase Studio 使用 AI 代理加速您的整个开发生命周期。
MLX
MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。MLX的主要功能熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。多设备:可以在任何支持的设备(CPU 和 GPU)上运行。统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。
Keras
Python版本的TensorFlow深度学习API
暂无评论...

