Llama 3

5天前发布 260 0 0

Llama 3是什么Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的AI解决方案,旨在通过先进的自然语言处理技术,支持广...

收录时间:
2025-04-23

Llama 3是什么

Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的AI解决方案,旨在通过先进的自然语言处理技术,支持广泛的应用场景,包括但不限于编程、问题解决、翻译和对话生成。

Llama 3的系列型号

Llama 3目前提供了两种型号,分别为8B(80亿参数)和70B(700亿参数)的版本,这两种型号旨在满足不同层次的应用需求,为用户提供了灵活性和选择的自由度。

  • Llama-3-8B:8B参数模型,这是一个相对较小但高效的模型,拥有80亿个参数。专为需要快速推理和较少计算资源的应用场景设计,同时保持了较高的性能标准。
  • Llama-3-70B:70B参数模型,这是一个更大规模的模型,拥有700亿个参数。它能够处理更复杂的任务,提供更深入的语言理解和生成能力,适合对性能要求更高的应用。

后续,Llama 3 还会推出 400B 参数规模的模型,目前还在训练中。Meta 还表示等完成 Llama 3 的训练,还将发布一份详细的研究论文。

Llama 3的官网入口

  • 官方项目主页:https://llama.meta.com/llama3/
  • GitHub模型权重和代码:https://github.com/meta-llama/llama3/
  • Hugging Face模型:https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6

Llama 3的改进地方

  • 参数规模:Llama 3提供了8B和70B两种参数规模的模型,相比Llama 2,参数数量的增加使得模型能够捕捉和学习更复杂的语言模式。
  • 训练数据集:Llama 3的训练数据集比Llama 2大了7倍,包含了超过15万亿个token,其中包括4倍的代码数据,这使得Llama 3在理解和生成代码方面更加出色。
  • 模型架构:Llama 3采用了更高效的分词器和分组查询注意力(Grouped Query Attention, GQA)技术,提高了模型的推理效率和处理长文本的能力。
  • 性能提升:通过改进的预训练和后训练过程,Llama 3在减少错误拒绝率、提升响应对齐和增加模型响应多样性方面取得了进步。
  • 安全性:引入了Llama Guard 2等新的信任和安全工具,以及Code Shield和CyberSec Eval 2,增强了模型的安全性和可靠性。
  • 多语言支持:Llama 3在预训练数据中加入了超过30种语言的高质量非英语数据,为未来的多语言能力打下了基础。
  • 推理和代码生成:Llama 3在推理、代码生成和指令跟随等方面展现了大幅提升的能力,使其在复杂任务处理上更加精准和高效。

Llama 3的性能评估

根据Meta的官方博客,经指令微调后的 Llama 3 8B 模型在MMLU、GPQA、HumanEval、GSM-8K、MATH等数据集基准测试中都优于同等级参数规模的模型(Gemma 7B、Mistral 7B),而微调后的 Llama 3 70B 在 MLLU、HumanEval、GSM-8K 等基准测试中也都优于同等规模的 Gemini Pro 1.5 和 Claude 3 Sonnet 模型。

此外,Meta还开发了一套新的高质量人类评估集,包含 1800 个提示,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结。通过与Claude Sonnet、Mistral Medium和GPT-3.5等竞争模型的比较,人类评估者基于该评估集进行了偏好排名,结果显示Llama 3在真实世界场景中的性能非常出色,最低都有52.9%的胜出率。

Llama 3的技术架构

  • 解码器架构:Llama 3采用了解码器(decoder-only)架构,这是一种标准的Transformer模型架构,主要用于处理自然语言生成任务。
  • 分词器和词汇量:Llama 3使用了具有128K个token的分词器,这使得模型能够更高效地编码语言,从而显著提升性能。
  • 分组查询注意力(Grouped Query Attention, GQA):为了提高推理效率,Llama 3在8B和70B模型中都采用了GQA技术。这种技术通过将注意力机制中的查询分组,减少了计算量,同时保持了模型的性能。
  • 长序列处理:Llama 3支持长达8,192个token的序列,使用掩码(masking)技术确保自注意力(self-attention)不会跨越文档边界,这对于处理长文本尤其重要。
  • 预训练数据集:Llama 3在超过15TB的token上进行了预训练,这个数据集不仅规模巨大,而且质量高,为模型提供了丰富的语言信息。
  • 多语言数据:为了支持多语言能力,Llama 3的预训练数据集包含了超过5%的非英语高质量数据,涵盖了超过30种语言。
  • 数据过滤和质量控制:Llama 3的开发团队开发了一系列数据过滤管道,包括启发式过滤器、NSFW(不适合工作场所)过滤器、语义去重方法和文本分类器,以确保训练数据的高质量。
  • 扩展性和并行化:Llama 3的训练过程中采用了数据并行化、模型并行化和流水线并行化,这些技术的应用使得模型能够高效地在大量GPU上进行训练。
  • 指令微调(Instruction Fine-Tuning):Llama 3在预训练模型的基础上,通过指令微调进一步提升了模型在特定任务上的表现,如对话和编程任务。

如何使用Llama 3

开发人员

Meta已在GitHub、Hugging Face、Replicate上开源其Llama 3模型,开发人员可使用torchtune等工具对Llama 3进行定制和微调,以适应特定的用例和需求,感兴趣的开发者可以查看官方的入门指南并前往下载部署。

  • 官方模型下载:https://llama.meta.com/llama-downloads
  • GitHub地址:https://github.com/meta-llama/llama3/
  • Hugging Face地址:https://huggingface.co/meta-llama
  • Replicate地址:https://replicate.com/meta

普通用户

不懂技术的普通用户想要体验Llama 3可以通过以下方式使用:

  • 访问Meta最新推出的Meta AI聊天助手进行体验(注:Meta.AI会锁区,只有部分国家可使用)
  • 访问Replicate提供的Chat with Llama进行体验https://llama3.replicate.dev/
  • 使用Hugging Chat(https://huggingface.co/chat/),可手动将模型切换至Llama 3

数据统计

数据评估

Llama 3浏览人数已经达到260,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:Llama 3的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找Llama 3的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于Llama 3特别声明

本站智能信息网提供的Llama 3都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

Ollama

Ollama

Ollama是一个用于在本地计算机上运行大型语言模型的命令行工具,允许用户下载并本地运行像Llama 2、Code Llama和其他模型,并支持自定义和创建自己的模型。该免费开源的项目,目前支持macOS和Linux操作系统,未来还将支持Windows系统​​​​。此外,Ollama还提供了官方的Docker镜像,由此使用Docker容器部署大型语言模型变得更加简单,确保所有与这些模型的交互都在本地进行,无需将私有数据发送到第三方服务。Ollama在macOS和Linux上支持GPU加速,并提供了简单的命令行界面(CLI)以及用于与应用程序交互的REST API​​。该工具对于需要在本地机器上运行和实验大语言模型的开发人员或研究人员来说特别有用,无需依赖外部云服务。Ollama安装包获取获取Ollama安装包,扫码关注回复:OllamaOllama支持的模型Ollma提供一个模型库,用户可以自行选择安装想要运行的模型,目前支持40+的模型,还在持续增加中,以下是可以下载的开源模型示例:模型参数大小文件大小下载运行命令DeepSeek-R11.5B、7B、14B、32B等12-320GBollama run deepseek-r1Neural Chat7B4.1GBollama run neural-chatStarling7B4.1GBollama run starling-lmMistral7B4.1GBollama run mistralLlama 27B3.8GBollama run llama2Code Llama7B3.8GBollama run codellamaLlama 2 Uncensored7B3.8GBollama run llama2-uncensoredLlama 2 13B13B7.3GBollama run llama2:13bLlama 2 70B70B39GBollama run llama2:70bOrca Mini3B1.9GBollama run orca-miniVicuna7B3.8GBollama run vicuna
Jan(Jan.ai)

Jan(Jan.ai)

Jan(Jan.ai)是一个免费开源的本地运行大模型并进行AI聊天对话的工具,可帮助用户在本地电脑(Windows、Mac、Linux)上安装、部署、运行并使用开源版本的ChatGPT替代大模型,如LLaMa、Mistral、Phi-2等20多个模型,也支持输入自己的OpenAI API Key以运行GPT。相较于AI工具集此前介绍的Ollama,该工具提供了对话UI和API服务器,适合开发者、研究人员或AI爱好者本地体验开源的大模型。Jan的主要功能本地运行开源大模型:支持LlaMa、Mistral、Phi-2、DeepSeek、Yi等20多个模型,可手动导入也可以在模型库下载模型简洁好用的聊天界面:软件界面清爽简洁、直观易用,直接在本地与开源大模型快速进行对话聊天支持多个平台:Jan支持在Windows、Mac(Intel、M1/M2/M3)和Linux等操作系统运行,后续还将推出移动端APP。内置API服务器:与OpenAI API兼容,可通过API获取模型信息、下载、启动、停止模型及聊天等如何使用Jan访问Jan的官网(jan.ai),选择对应的电脑操作系统版本,点击Download进行下载然后安装并打开软件,在软件界面的左下角点击Download your first model进入模型库Hub界面,选择你感兴趣的模型进行下载,下载完成后点击Use使用该模型在对话界面输入你的描述即可与你选择的模型进行对话啦Jan还在持续开发中,后续会支持移动端APP、创建AI助理、推理引擎、插件扩展等功能。
DeepFloyd IF:StabilityAI旗下的DeepFloyd团队推出的图片生成模型

DeepFloyd IF:StabilityAI旗下的DeepFloyd团队推出的图片生成模型

DeepFloyd IF是由StabilityAI旗下的DeepFloyd研究团队推出的开源的文本到图像生成模型,IF是一个基于级联方法的模块化神经网络。IF是由多个神经模块(处理特定任务的独立神经网络)构建的,在一个架构内联合起来产生协同效应。IF以级联方式生成高分辨率图像:从产生低分辨率样本的基础模型开始,然后由一系列的升级模型提升,以创造令人惊叹的高分辨率图像。IF的基础和超分辨率模型采用扩散模型,利用马尔可夫链步骤将随机噪声引入数据中,然后再反转过程,从噪声中生成新的数据样本。IF在像素空间内操作,而不是依赖潜伏图像表征的潜伏扩散(如稳定扩散)。

暂无评论

none
暂无评论...