魔搭社区是什么
魔搭社区(ModelScope)是阿里巴巴达摩院推出的综合性的人工智能模型共享与服务平台,为构建一个开放、高效、易用的AI模型生态,为开发者、研究人员和企业用户提供一站式的模型获取、部署和应用体验。 ModelScope平台汇集了丰富的预训练模型资源,涵盖自然语言处理、计算机视觉、语音识别等多个领域。用户可以通过简单的搜索和下载操作,快速获取所需的模型,结合平台提供的工具进行微调、优化和部署。魔搭社区支持多种硬件平台,包括昇腾、GPU等,满足不同用户的需求。
魔搭社区的主要功能
- 丰富的预训练模型:提供涵盖自然语言处理、计算机视觉、语音识别、多模态等多个领域的预训练模型。
- 模型上下文协议(MCP):推出MCP广场,上架千余款热门MCP服务,包括支付宝、MiniMax等独家首发服务。MCP为大模型对接外部数据源和工具建立了统一标准,简化了开发流程。
- 数据集与指标:提供多种数据集和性能评估指标,方便开发者进行模型训练和优化。
- 模型推理与部署:支持在线推理、本地部署和云端部署。用户可以通过网页界面直接上传数据获取推理结果,也可以通过SDK在本地运行模型。
- 分布式训练与优化:提供分布式训练工具,支持多种框架(如PyTorch、TensorFlow等),提供模型压缩、量化等优化工具。
- 调试与集成:提供简单易用的调试环境和工具,支持第三方平台集成,降低开发者使用门槛。
- 开源与社区共建:作为一个开源平台,鼓励开发者贡献模型和代码,形成开源协作生态。
- 开发者社区:提供交流平台,开发者可以分享经验、讨论技术问题,共同推动AI技术的发展。
如何使用魔搭社区
- 访问平台:访问魔搭社区的官方网站,注册或登录。
- 环境准备
- 安装 Python:确保系统中已安装 Python(推荐版本 3.8 及以上)。
- 安装 ModelScope Python 库:通过以下命令安装 ModelScope 的 Python 库。
- 模型下载
- 通过命令行下载:使用 ModelScope 提供的命令行工具下载模型。
- 通过网页界面下载:访问魔搭社区官网,在模型库中搜索并下载所需的模型。
- 模型推理:使用 Python 脚本加载模型并进行推理。
- 模型微调:使用 ms-swift 进行微调
ms-swift是魔搭社区提供的大模型训练和部署框架。 - 模型部署:使用 Vllm 部署模型,Vllm 是一个高效的推理框架,支持多 GPU 分布式推理。
- 探索更多模型和工具:访问魔搭社区官网,浏览丰富的模型库、数据集和工具。
- 参与社区交流:加入魔搭社区的开发者社区,与其他开发者交流经验,共同推动 AI 技术的发展。
魔搭社区的应用场景
- AI研究与教育:研究人员和教育工作者可以用ModelScope上的模型进行AI相关的研究和教学活动,提高研究效率和学习效果。
- 企业应用开发:企业可以用ModelScope上的模型快速开发AI应用,降低研发成本,加快产品上市时间。
- 创业项目:初创企业可以借助ModelScope上的模型资源,开发创新的AI产品和服务,验证商业模式并实现产品的快速迭代。
- 个人项目:个人开发者可以用ModelScope上的模型实现自己的创意,开发个性化的AI应用。
- 多模态应用:ModelScope支持多种多模态模型,例如处理文本、图像和视频的InternVL3系列模型。可以应用于智能助手、内容创作、视频生成等领域。
数据统计
数据评估
关于魔搭社区:阿里达摩院推出的AI模型社区,超过300+开源AI模型特别声明
本站智能信息网提供的魔搭社区:阿里达摩院推出的AI模型社区,超过300+开源AI模型都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
Llama 3是什么Llama 3是Meta公司最新开源推出的新一代大型语言模型(LLM),包含8B和70B两种参数规模的模型,标志着开源人工智能领域的又一重大进步。作为Llama系列的第三代产品,Llama 3不仅继承了前代模型的强大功能,还通过一系列创新和改进,提供了更高效、更可靠的AI解决方案,旨在通过先进的自然语言处理技术,支持广泛的应用场景,包括但不限于编程、问题解决、翻译和对话生成。Llama 3的系列型号Llama 3目前提供了两种型号,分别为8B(80亿参数)和70B(700亿参数)的版本,这两种型号旨在满足不同层次的应用需求,为用户提供了灵活性和选择的自由度。Llama-3-8B:8B参数模型,这是一个相对较小但高效的模型,拥有80亿个参数。专为需要快速推理和较少计算资源的应用场景设计,同时保持了较高的性能标准。Llama-3-70B:70B参数模型,这是一个更大规模的模型,拥有700亿个参数。它能够处理更复杂的任务,提供更深入的语言理解和生成能力,适合对性能要求更高的应用。后续,Llama 3 还会推出 400B 参数规模的模型,目前还在训练中。Meta 还表示等完成 Llama 3 的训练,还将发布一份详细的研究论文。Llama 3的官网入口官方项目主页:https://llama.meta.com/llama3/GitHub模型权重和代码:https://github.com/meta-llama/llama3/Hugging Face模型:https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6Llama 3的改进地方参数规模:Llama 3提供了8B和70B两种参数规模的模型,相比Llama 2,参数数量的增加使得模型能够捕捉和学习更复杂的语言模式。训练数据集:Llama 3的训练数据集比Llama 2大了7倍,包含了超过15万亿个token,其中包括4倍的代码数据,这使得Llama 3在理解和生成代码方面更加出色。模型架构:Llama 3采用了更高效的分词器和分组查询注意力(Grouped Query Attention, GQA)技术,提高了模型的推理效率和处理长文本的能力。性能提升:通过改进的预训练和后训练过程,Llama 3在减少错误拒绝率、提升响应对齐和增加模型响应多样性方面取得了进步。安全性:引入了Llama Guard 2等新的信任和安全工具,以及Code Shield和CyberSec Eval 2,增强了模型的安全性和可靠性。多语言支持:Llama 3在预训练数据中加入了超过30种语言的高质量非英语数据,为未来的多语言能力打下了基础。推理和代码生成:Llama 3在推理、代码生成和指令跟随等方面展现了大幅提升的能力,使其在复杂任务处理上更加精准和高效。Llama 3的性能评估根据Meta的官方博客,经指令微调后的 Llama 3 8B 模型在MMLU、GPQA、HumanEval、GSM-8K、MATH等数据集基准测试中都优于同等级参数规模的模型(Gemma 7B、Mistral 7B),而微调后的 Llama 3 70B 在 MLLU、HumanEval、GSM-8K 等基准测试中也都优于同等规模的 Gemini Pro 1.5 和 Claude 3 Sonnet 模型。此外,Meta还开发了一套新的高质量人类评估集,包含 1800 个提示,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色/角色、开放式问答、推理、重写和总结。通过与Claude Sonnet、Mistral Medium和GPT-3.5等竞争模型的比较,人类评估者基于该评估集进行了偏好排名,结果显示Llama 3在真实世界场景中的性能非常出色,最低都有52.9%的胜出率。Llama 3的技术架构解码器架构:Llama 3采用了解码器(decoder-only)架构,这是一种标准的Transformer模型架构,主要用于处理自然语言生成任务。分词器和词汇量:Llama 3使用了具有128K个token的分词器,这使得模型能够更高效地编码语言,从而显著提升性能。分组查询注意力(Grouped Query Attention, GQA):为了提高推理效率,Llama 3在8B和70B模型中都采用了GQA技术。这种技术通过将注意力机制中的查询分组,减少了计算量,同时保持了模型的性能。长序列处理:Llama 3支持长达8,192个token的序列,使用掩码(masking)技术确保自注意力(self-attention)不会跨越文档边界,这对于处理长文本尤其重要。预训练数据集:Llama 3在超过15TB的token上进行了预训练,这个数据集不仅规模巨大,而且质量高,为模型提供了丰富的语言信息。多语言数据:为了支持多语言能力,Llama 3的预训练数据集包含了超过5%的非英语高质量数据,涵盖了超过30种语言。数据过滤和质量控制:Llama 3的开发团队开发了一系列数据过滤管道,包括启发式过滤器、NSFW(不适合工作场所)过滤器、语义去重方法和文本分类器,以确保训练数据的高质量。扩展性和并行化:Llama 3的训练过程中采用了数据并行化、模型并行化和流水线并行化,这些技术的应用使得模型能够高效地在大量GPU上进行训练。指令微调(Instruction Fine-Tuning):Llama 3在预训练模型的基础上,通过指令微调进一步提升了模型在特定任务上的表现,如对话和编程任务。如何使用Llama 3开发人员Meta已在GitHub、Hugging Face、Replicate上开源其Llama 3模型,开发人员可使用torchtune等工具对Llama 3进行定制和微调,以适应特定的用例和需求,感兴趣的开发者可以查看官方的入门指南并前往下载部署。官方模型下载:https://llama.meta.com/llama-downloadsGitHub地址:https://github.com/meta-llama/llama3/Hugging Face地址:https://huggingface.co/meta-llamaReplicate地址:https://replicate.com/meta普通用户不懂技术的普通用户想要体验Llama 3可以通过以下方式使用:访问Meta最新推出的Meta AI聊天助手进行体验(注:Meta.AI会锁区,只有部分国家可使用)访问Replicate提供的Chat with Llama进行体验https://llama3.replicate.dev/使用Hugging Chat(https://huggingface.co/chat/),可手动将模型切换至Llama 3
Llama 3 中文体验
Llama3在线体验 & LLama2中文大模型Atom由L
文心大模型
百度推出的产业级知识增强大模型
Cohere
Cohere是一个提供大语言模型的平台,帮助开发人员和企业构建高性能的AI产品。该平台主要提供AI驱动的搜索文本(多语言嵌入、神经搜索、搜索排名)、分类文本和生成文本等服务,可帮助企业快速部署对话式AI聊天机器人、生成式搜索引擎、文本摘要总结、增强向量检索等。5月3日,Cohere公司获2.5亿美元融资,目前估值约20亿美元,投资者包括Saleforce、Nvidia、Index Ventures等。该公司的联合创始人 Aidan Gomez 是《Attention Is All You Need》论文的作者之一,此论文提出了 GPT 等大语言模型的采用的 Transformer 架构。Cohere提供了一个Playground供用户试玩,如果你感兴趣的话可以访问试试看。另外Cohere还推出了LLM University,一个学习大语言模型的课程,可帮助你了解大型语言模型及其体系结构的基础知识。
魔乐社区
魔乐社区是什么魔乐社区(Modelers)是天翼云与华为联合推出的AI开发者社区,提供TDMA(工具链、数据集、模型、应用)的托管展示服务和支撑系统。魔乐社区汇聚AI产业链资源,依托理事会成员单位,吸引开发者共同推动AI发展,解决行业难题,促进生态繁荣。社区提供免费算力,方便用户体验AI模型和应用效果。魔乐社区的主要功能模型托管与管理:提供模型库,用户能托管和分享用于自然语言处理、视觉和音频任务的AI模型。数据集托管:托管用在各种AI任务的数据集,包括翻译、语音识别和图像分类等,供训练、评估和测试使用。体验空间:提供机器学习和深度学习算法的应用案例,支持用户在浏览器中直接体验模型的交互式应用程序。Git仓库服务:托管基于Git的仓库,支持用户和组织协作开发模型和代码。工具套件集成:集成openMind Library和openMind Hub Client等工具套件,方便模型开发和管理。如何使用魔乐社区注册和登录:访问魔乐社区官方网站。按照提示完成登录和注册。 获取模型访问模型库,获取平台上所有公开的模型。根据模型标签或任务筛选所需的模型。以PyTorch-NPU/qwen1.5_7b_chat模型为例,筛选或搜索找到模型。点击模型卡片,进入模型详情页,查看模型介绍和操作指导。根据模型详情页的指引,在线体验模型效果或下载模型文件。参考环境安装文档进行详细安装步骤。浏览和使用更多社区资源数据集:访问和下载用于AI训练的数据集。体验空间:用社区提供的在线环境进行模型测试和应用开发。参与社区活动课程和研讨:参与社区提供的课程和研讨交流。竞赛和挑战:参加社区举办的AI竞赛和巅峰挑战。使用工具链:安装和使用社区提供的工具链,进行模型开发和推理。贡献和分享:分享模型和应用:在社区中分享自己的AI模型和应用。反馈和建议:基于社区的帮助中心提供反馈和建议。魔乐社区的应用场景智能客服系统:开发能理解用户查询,提供即时响应的聊天机器人。自动驾驶汽车:基于计算机视觉技术识别道路标志、行人和障碍物,提高驾驶安全性。健康监测应用:分析穿戴设备收集的数据,监测用户健康状况并提供健康建议。个性化推荐系统:在电商网站或流媒体服务中,根据用户行为和偏好推荐商品或内容。智能语音助手:创建能理解和执行语音命令的虚拟助手,如控制智能家居设备。
Uberduck: 开源的AI语音生成社区,5000多种不同的声音
Uberduck是什么Uberduck是一个开源的AI语音生成和合成的社区,该平台提供了超过5000多种声音帮助用户制作AI配音和语音,用户可以从文本生成逼真的语音、歌唱和说唱,创建自定义语音克隆。支持多种语言,提供API访问,开发者能将这些功能集成到自己的应用程序中。Uberduck的主要功能文本转语音(TTS):将文本转换为自然流畅的语音输出,支持多种语言和语音风格。AI歌唱:生成AI驱动的歌唱声音,为音乐创作带来新的维度。声音转换:能将一种声音风格转换为另一种,增加创作的多样性。声音克隆:复制特定的声音特征,创建独特的声音模型。API访问:提供编程接口,支持用户将Uberduck的语音合成功能集成到自己的应用程序或服务中,实现个性化开发。说唱生成:自动生成说唱歌词并合成说唱音频。多语言支持:Uberduck支持多种语言,适合需要多种语言能力的全球项目。Uberduck的产品官网产品官网:uberduck.aiUberduck的应用场景音乐制作:音乐人可以使用Uberduck创作独特的AI声音歌曲,为现有曲目添加AI和声或背景声音。影视制作:在影视制作中,Uberduck可以为动画角色配音,创建预告片或广告旁白。教育领域:教育工作者可以开发交互式学习材料,制作多语言教学内容。播客和有声读物:生成专业质量的叙述声音,提高听众的听觉体验。游戏开发:为游戏角色创建多样化的声音,增强游戏体验。
Tailwind Genie
秒建网站,TailwindGenie帮助开发者和设计师更快速、更简单地构建网站。
提示工程指南Prompt Engineering Guide
提示工程指南(Prompt Engineering Guide)是由 DAIR.AI 发起的项目,旨在帮助研发和行业内相关人员了解提示工程。以传播 AI 技术和研究成果为目标,DAIR.AI 的愿景是赋能新一代 AI 领域的创新者。该免费开源的提示工程项目在GitHub上已超过3万个人标星,包含了与 LLM 提示工程相关的所有最新论文、学习指南、讲座、参考资料和工具。提示工程指南(Prompt Engineering Guide)的目录一、提示工程简介大语言模型设置基本概念提示词要素设计提示的通用技巧提示词示例二、提示技术零样本提示少样本提示链式思考(CoT)提示自我一致性生成知识提示思维树Tree of Thoughts检索增强生成自动推理和工具使用自动提示工程师Active-Prompt方向性刺激提示ReAct框架多模态思维链提示方法基于图的提示三、提示应用程序辅助语言模型生成数据Generating Code毕业生工作分类案例研究Prompt Function四、模型FlanChatGPTLLaMAGPT-4Model Collection五、风险和误用对抗性提示真实性偏见
暂无评论...

