GPT

2个月前发布 1,290 0 0

GPT-4介绍GPT-4(Generative Pre-trained Transformer)是 OpenAI 开发的自然语言处理模型 GPT 家族中的第四个版本,该模型依靠强大的神经网络来理解和生成类似人类的语言。 如何免费使用GPT-4?不开会员的6种方法 目前官方版的GPT-4仅能通过ChatGPT Plus付费会员才能使用,免费...

收录时间:
2025-04-23

GPT-4介绍

GPT-4(Generative Pre-trained Transformer)是 OpenAI 开发的自然语言处理模型 GPT 家族中的第四个版本,该模型依靠强大的神经网络来理解和生成类似人类的语言。

如何免费使用GPT-4?不开会员的6种方法

目前官方版的GPT-4仅能通过ChatGPT Plus付费会员才能使用,免费版的ChatGPT无法使用最新的GPT-4,而Plus版本需要每个月花费20美元来订阅,并且国内付款非常困…


AI教程

2年前 (2023)

GPT-4 通过使用被称为「转换器(Transformer)」的特殊架构来帮助软件理解单词的含义以及它们在句子中的组合方式。通俗来讲,Transformer帮助计算机找出如何将所有的词以正确的顺序放在一起,使之有意义。

之所以采用这样的方法,是因为该模型已经在一个巨大的数据集上进行了训练,其中包括来自不同来源的文本,如书籍、文章和网站。这种训练使 GPT-4 模型能够进行类似人类的对话,并产生看似有意义的回应。不过虽然 GPT-4 创造的文本和回应读起来像人,但它远远不是有意识的智能,离通用人工智能还有距离。

GPT-4的工作原理

GPT-4通过与其前身(GPT-3.5)相同的基本流程工作,但规模更大,以下是其主要的工作原理:

  • Transformer架构: GPT-4是使用一种叫做「Transformer」的设计来构建的,这些转换器就像超级智能机器,能够理解一句话中哪些词是重要的,以及它们之间的关系。
  • 大规模的预训练: GPT-4从大量的文本中学习,如书籍、网站和文章,这样一来,它就能更好地理解语言模式、语法和事实。
  • 微调(Fine-tuning): 在从大量文本中学习后,GPT-4会在特定的任务中接受训练,如回答问题或理解文本中的情感,这有助于它在处理这些任务时变得更加出色。
  • 分词(Tokenization): GPT-4将文本分解成更小的部分,称为「tokens」,这些token可以是单词或单词的一部分,这有助于它处理不同的语言并理解词语的含义。
  • 上下文窗口(Context window): GPT-4有一个限制,即它可以一次查看多少个token。这个限制有助于它理解语境和单词之间的关系,但这也意味着它不一定能理解很长的句子或段落。
  • 概率分布和抽样: 当GPT-4生成文本时,它根据模型认为每个词的可能性的大小来猜测下一个词。然后,它从这些猜测中挑选出一个词,使其够创造出多样化和有趣的句子。
  • 细粒度控制(Fine-grained control): GPT-4可以通过使用特殊提示或调整其设置等技巧,引导它给出特定类型的答案或文本,以帮助从该模型中获得我们想要的结果。

ChatGPT和GPT-4的区别

ChatGPT 和 GPT-4 并不是同一回事,ChatGPT 是基于 GPT-3.5 和 GPT-4 模型的,专门为对话式人工智能应用而设计的,比如根据用户输入生成类似人类的文本回复。

而GPT-4指的是GPT系列大语言模型的当前版本——驱动ChatGPT的引擎。

ChatGPT提供的输出读起来更自然,GPT-4更强大,在输入/输出方面可以处理更多文本。

GPT-4可以免费访问吗?

这个问题的答案:是也不是。

用户可以通过ChatGPT、New Bing等软件访问GPT-4,这些平台使用GPT-4来生成内容并与用户互动。然而,GPT-4只有在ChatGPT Plus付费计划下才能使用,或者作为开发者建立应用程序和服务的API。New Bing(新必应)可以每天免费有限次数使用GPT-4驱动的AI聊天,而独立用户在这些人工智能聊天机器人平台之外没有机会使用GPT-4。

数据统计

数据评估

GPT浏览人数已经达到1,290,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:GPT的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找GPT的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于GPT特别声明

本站智能信息网提供的GPT都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

DeepFloyd IF:StabilityAI旗下的DeepFloyd团队推出的图片生成模型

DeepFloyd IF:StabilityAI旗下的DeepFloyd团队推出的图片生成模型

DeepFloyd IF是由StabilityAI旗下的DeepFloyd研究团队推出的开源的文本到图像生成模型,IF是一个基于级联方法的模块化神经网络。IF是由多个神经模块(处理特定任务的独立神经网络)构建的,在一个架构内联合起来产生协同效应。IF以级联方式生成高分辨率图像:从产生低分辨率样本的基础模型开始,然后由一系列的升级模型提升,以创造令人惊叹的高分辨率图像。IF的基础和超分辨率模型采用扩散模型,利用马尔可夫链步骤将随机噪声引入数据中,然后再反转过程,从噪声中生成新的数据样本。IF在像素空间内操作,而不是依赖潜伏图像表征的潜伏扩散(如稳定扩散)。
OpenBMB:清华团队支持发起的大规模预训练语言模型库与相关工具

OpenBMB:清华团队支持发起的大规模预训练语言模型库与相关工具

OpenBMB全称为Open Lab for Big Model Base,旨在打造大规模预训练语言模型库与相关工具, 加速百亿级以上大模型的训练、微调与推理,降低大模型使用门槛,与国内外开发者共同努力形成大模型开源社区, 推动大模型生态发展,实现大模型的标准化、普及化和实用化,让大模型飞入千家万户。OpenBMB开源社区由清华大学自然语言处理实验室和智源研究院语言大模型加速技术创新中心共同支持发起。 发起团队拥有深厚的自然语言处理和预训练模型研究基础,近年来围绕模型预训练、提示微调、模型压缩技术等方面在顶级国际会议上发表了数十篇高水平论文。
Gemma

Gemma

Gemma是什么Gemma是由谷歌DeepMind和谷歌的其他团队开发的一系列轻量级、先进的开放AI模型,基于与Gemini模型相同的技术,旨在帮助开发者和研究人员构建负责任的AI应用。Gemma模型系列包括两种权重规模的模型:Gemma 2B 和 Gemma 7B,提供预训练和指令微调版本,支持多种框架,如JAX、PyTorch和TensorFlow,以在不同设备上高效运行。6月28日,第二代模型Gemma 2已发布。Gemma的官方入口Gemma的官网主页:https://ai.google.dev/gemma?hl=zh-cnGemma的Hugging Face模型:https://huggingface.co/models?search=google/gemmaGemma的Kaggle模型地址:https://www.kaggle.com/models/google/gemma/code/Gemma的技术报告:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf官方PyTorch实现GitHub代码库:https://github.com/google/gemma_pytorchGemma的Google Colab运行地址:https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/lora_tuning.ipynbGemma的主要特性轻量级架构:Gemma模型设计为轻量级,便于在多种计算环境中运行,包括个人电脑和工作站。开放模型:Gemma模型的权重是开放的,允许用户在遵守许可协议的情况下进行商业使用和分发。预训练与指令微调:提供预训练模型和经过指令微调的版本,后者通过人类反馈强化学习(RLHF)来确保模型行为的负责任性。多框架支持:Gemma支持JAX、PyTorch和TensorFlow等主要AI框架,通过Keras 3.0提供工具链,简化了推理和监督微调(SFT)过程。安全性与可靠性:在设计时,Gemma遵循Google的AI原则,使用自动化技术过滤训练数据中的敏感信息,并进行了一系列安全评估,包括红队测试和对抗性测试。性能优化:Gemma模型针对NVIDIA GPU和Google Cloud TPUs等硬件平台进行了优化,确保在不同设备上都能实现高性能。社区支持:Google提供了Kaggle、Colab等平台的免费资源,以及Google Cloud的积分,鼓励开发者和研究人员利用Gemma进行创新和研究。跨平台兼容性:Gemma模型可以在多种设备上运行,包括笔记本电脑、台式机、物联网设备和云端,支持广泛的AI功能。负责任的AI工具包:Google还发布了Responsible Generative AI Toolkit,帮助开发者构建安全和负责任的AI应用,包括安全分类器、调试工具和应用指南。Gemma的技术要点模型架构:Gemma基于Transformer解码器构建,这是当前自然语言处理(NLP)领域最先进的模型架构之一。采用了多头注意力机制,允许模型在处理文本时同时关注多个部分。此外,Gemma还使用了旋转位置嵌入(RoPE)来代替绝对位置嵌入,以减少模型大小并提高效率。GeGLU激活函数取代了标准的ReLU非线性激活,以及在每个Transformer子层的输入和输出都进行了归一化处理。训练基础设施:Gemma模型在Google的TPUv5e上进行训练,这是一种专为机器学习设计的高性能计算平台。通过在多个Pod(芯片集群)上进行模型分片和数据复制,Gemma能够高效地利用分布式计算资源。预训练数据:Gemma模型在大量英语数据上进行预训练(2B模型大约2万亿个token的数据上预训练,而7B模型则基于6万亿个token),这些数据主要来自网络文档、数学和代码。预训练数据经过过滤,以减少不想要或不安全的内容,同时确保数据的多样性和质量。微调策略:Gemma模型通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)进行微调。这包括使用合成的文本对和人类生成的提示响应对,以及基于人类偏好数据训练的奖励模型。安全性和责任:Gemma在设计时考虑了模型的安全性和责任,包括在预训练阶段对数据进行过滤,以减少敏感信息和有害内容的风险。此外,Gemma还通过了一系列的安全性评估,包括自动化基准测试和人类评估,以确保模型在实际应用中的安全性。性能评估:Gemma在多个领域进行了广泛的性能评估,包括问答、常识推理、数学和科学问题解答以及编码任务。Gemma模型与同样规模或更大规模的开放模型进行了性能对比,在MMLU、MBPP等18个基准测试中,有11个测试结果超越了Llama-13B或Mistral-7B等模型。开放性和可访问性:Gemma模型以开源的形式发布,提供了预训练和微调后的检查点,以及推理和部署的开源代码库。这使得研究人员和开发者能够访问和利用这些先进的语言模型,推动AI领域的创新。常见问题Gemma一词的含义是什么?Gemma在拉丁语中的意思是“宝石”。Gemma是开源的吗?Gemma是开源开放的大模型,用户可在Hugging Face查看和下载其模型。Gemma模型的参数量是多少?Gemma目前提供20亿和70亿参数量的模型,后续还会推出新的变体。
Gradio

Gradio

Gradio是一个开源的Python库,用于构建演示机器学习或数据科学,以及web应用程序。你可以使用Gradio基于自己的机器学习模型或数据科学工作流快速创建一个漂亮的用户界面,让用户可以尝试拖放他们自己的图像、输入文本、录制他们自己的声音,并通过浏览器与你的演示程序进行交互。Google、HuggingFace、亚马逊、Meta、思科、VMware等公司都在使用。Gradio适用于:向客户/合伙人/用户/学生演示您的机器学习模型。通过自动共享链接快速部署您的模型,并获得模型性能反馈。在开发过程中使用内置的操作和解释工具交互式地调试模型。

暂无评论

none
暂无评论...