MiracleVision奇想智能是什么
MiracleVision奇想智能是由美图秀秀公司推出的自研AI视觉大模型,不仅具备高度的美学导向和图像处理能力,还能够广泛地应用于多个行业,提高工作流效率。同时,它还提供了简单易用的AI视觉创作工具,使用户能够快速进行图像的创作和编辑。最新的MiracleVision 4.0支持AI图片生成、AI设计排版和AI视频生成等能力。
MiracleVision奇想智能的主要能力
- AI图片生成,支持文生图和图生图,输入文字或上传图像即可创作图片,提供多种风格、参数调整、图片尺寸、精准画面控制等
- AI智能设计,包括矢量图形、文字特效、智能分层和智能排版,可以满足AI设计的基础需求
- AI视频生成,提供文生视频、图生视频、视频运镜、视频生视频四大功能,让奇思妙想动起来
- 视觉模型商店,平台提供丰富的视觉模型,从经典复古到现代潮流、从超现实幻想到极简抽象,用户可以任意选择创造惊艳的视觉效果
MiracleVision奇想智能的适用行业
- 电商行业:从涂鸦生成线稿、线稿上色、商品图、模特试穿图,再到电商物料输出,全程可通过MiracleVision实现。
- 游戏制作:包揽场景设计、角色设计、道具设计、UI图标、宣发物料等流程,拓宽设计师想象空间的同时助力游戏行业降本。
- 影视行业:充分满足概念场景设计、分镜设计、人物造型、道具设计、宣发物料的效果要求,极大提升影视行业设计环节的效率。
- 广告设计:覆盖创意脑暴、创意深化、平面排版、多尺寸延展、线下投放预览的全工作流,助力客户在广告物料制作环节提效。
- 动漫卡通:打通了概念设计、故事板生成、线稿上色、动漫补帧、视频转动漫等流程,支持创意到物料成品的快速落地。
数据统计
数据评估
关于MiracleVision 奇想智能特别声明
本站智能信息网提供的MiracleVision 奇想智能都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
Gradio是一个开源的Python库,用于构建演示机器学习或数据科学,以及web应用程序。你可以使用Gradio基于自己的机器学习模型或数据科学工作流快速创建一个漂亮的用户界面,让用户可以尝试拖放他们自己的图像、输入文本、录制他们自己的声音,并通过浏览器与你的演示程序进行交互。Google、HuggingFace、亚马逊、Meta、思科、VMware等公司都在使用。Gradio适用于:向客户/合伙人/用户/学生演示您的机器学习模型。通过自动共享链接快速部署您的模型,并获得模型性能反馈。在开发过程中使用内置的操作和解释工具交互式地调试模型。
PaLM 2
PaLM(Pathways Language Model) 是一种大型语言模型,即 LLM,类似于OpenAI 创建的 GPT 系列或Meta 的 LLaMA 系列模型。谷歌于 2022 年 4 月首次宣布推出 PaLM,超过了5400亿个训练参数。与其他 LLM 一样,PaLM 是一个灵活的系统,可以执行各种文本生成和编辑任务。例如,你可以将 PaLM 训练成像 ChatGPT 这样的对话式聊天机器人,或者你可以将它用于诸如总结文本甚至编写代码等任务。(这类似于谷歌今天也为其 Workspace 应用程序(如 Google Docs 和 Gmail)宣布的功能。)在 2023 谷歌 I/O 大会上,谷歌 CEO 皮查伊宣布推出对标 GPT-4 的大模型 PaLM 2,并正式发布预览版本,改进了数学、代码、推理、多语言翻译和自然语言生成能力。谷歌将为 PaLM 2 提供四种不同大小的版本,从最小到最大:Gecko、Otter、Bison 和 Unicorn。Gecko 非常轻巧,可以在移动设备上工作,并且速度足够快,即使在离线时也能在设备上运行出色的交互式应用程序。这种多功能性意味着可以对 PaLM 2 进行微调,以更多方式支持整个类别的产品,从而帮助更多人。PaLM 2的特性PaLM 2 是谷歌的下一代大语言模型,具有改进的多语言、推理和编码能力。多语言性: PaLM 2 在多语言文本方面接受了更多的训练,涵盖 100 多种语言。这显著提高了它在多种语言中理解、生成和翻译细微差别文本(包括成语、诗歌和谜语)的能力,这是一个很难解决的问题。PaLM 2 还通过了“精通”级别的高级语言能力考试。推理: PaLM 2 的广泛数据集包括科学论文和包含数学表达式的网页。因此,它展示了逻辑、常识推理和数学方面的改进能力。编程: PaLM 2 在大量公开可用的源代码数据集上进行了预训练。这意味着它擅长 Python 和 JavaScript 等流行的编程语言,但也可以生成 Prolog、Fortran 和 Verilog 等语言的专用代码。
OpenBMB:清华团队支持发起的大规模预训练语言模型库与相关工具
OpenBMB全称为Open Lab for Big Model Base,旨在打造大规模预训练语言模型库与相关工具, 加速百亿级以上大模型的训练、微调与推理,降低大模型使用门槛,与国内外开发者共同努力形成大模型开源社区, 推动大模型生态发展,实现大模型的标准化、普及化和实用化,让大模型飞入千家万户。OpenBMB开源社区由清华大学自然语言处理实验室和智源研究院语言大模型加速技术创新中心共同支持发起。 发起团队拥有深厚的自然语言处理和预训练模型研究基础,近年来围绕模型预训练、提示微调、模型压缩技术等方面在顶级国际会议上发表了数十篇高水平论文。
Lobe
简单免费的机器学习模型训练工具
DeepSpeed:微软开源的低成本实现类似ChatGPT的模型训练
微软开源的低成本实现类似ChatGPT的模型训练
Codex
OpenAI旗下AI代码生成训练模型
Ollama
Ollama是一个用于在本地计算机上运行大型语言模型的命令行工具,允许用户下载并本地运行像Llama 2、Code Llama和其他模型,并支持自定义和创建自己的模型。该免费开源的项目,目前支持macOS和Linux操作系统,未来还将支持Windows系统。此外,Ollama还提供了官方的Docker镜像,由此使用Docker容器部署大型语言模型变得更加简单,确保所有与这些模型的交互都在本地进行,无需将私有数据发送到第三方服务。Ollama在macOS和Linux上支持GPU加速,并提供了简单的命令行界面(CLI)以及用于与应用程序交互的REST API。该工具对于需要在本地机器上运行和实验大语言模型的开发人员或研究人员来说特别有用,无需依赖外部云服务。Ollama安装包获取获取Ollama安装包,扫码关注回复:OllamaOllama支持的模型Ollma提供一个模型库,用户可以自行选择安装想要运行的模型,目前支持40+的模型,还在持续增加中,以下是可以下载的开源模型示例:模型参数大小文件大小下载运行命令DeepSeek-R11.5B、7B、14B、32B等12-320GBollama run deepseek-r1Neural Chat7B4.1GBollama run neural-chatStarling7B4.1GBollama run starling-lmMistral7B4.1GBollama run mistralLlama 27B3.8GBollama run llama2Code Llama7B3.8GBollama run codellamaLlama 2 Uncensored7B3.8GBollama run llama2-uncensoredLlama 2 13B13B7.3GBollama run llama2:13bLlama 2 70B70B39GBollama run llama2:70bOrca Mini3B1.9GBollama run orca-miniVicuna7B3.8GBollama run vicuna
文心大模型
百度推出的产业级知识增强大模型
暂无评论...

