MLX

7个月前发布 6,085 0 0

MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。MLX的主要功能熟悉的 API:MLX 有一个紧随 NumPy...

收录时间:
2025-04-23

MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。

MLX的主要功能

  • 熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。
  • 可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。
  • 惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。
  • 动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。
  • 多设备:可以在任何支持的设备(CPU 和 GPU)上运行。
  • 统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。

数据统计

数据评估

MLX浏览人数已经达到6,085,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:MLX的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找MLX的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于MLX特别声明

本站智能信息网提供的MLX都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

天壤小白

天壤小白

天壤小白是什么?天壤小白是天壤公司开发的一个通用大语言模型,它是一个基于互联网公开数据训练而成的人工智能模型,拥有高达1860亿个参数。这个模型采用了生成式架构,具备强大的语义理解和上下文感知能力,能够精准捕捉文本中的语义关联,并理解用户的指令和意图。天壤小白应用开发平台是一个专为开发者设计的AI应用开发平台,旨在帮助用户轻松构建、管理和运营基于天壤小白大语言模型的AI应用。该平台利用天壤小白大模型,结合Embedding模型,允许用户通过编写自然语言的方式创建可信赖的商业级AI应用。平台提供了多种应用类型和使用方式,以适应不同的业务场景。天壤小白应用开发平台的主要功能应用创建与管理:用户可以创建不同类型的AI应用,包括文本生成型、对话型、搜索型和工作流应用。平台提供了一个直观的界面,让用户能够轻松设置应用的图标、名称和类型。灵活的模型配置:平台提供了多种版本的天壤小白大语言模型,用户可以根据应用需求选择合适的模型。同时,用户还可以配置模型参数,如模型版本、输入输出长度限制等。提示词与上下文管理:用户可以设计提示词来指导AI模型生成特定的输出,同时管理上下文信息,确保AI应用在对话中保持连贯性。敏感词检测:为了确保内容的安全性,平台支持敏感词检测功能,用户可以设置敏感词列表,AI在生成内容时会自动过滤这些词汇。API调用:平台提供了友好的API接口,开发者可以通过API将AI能力集成到自己的应用中,实现后端或前端的直接调用。Web App在线访问:用户可以创建Web App,通过链接直接访问AI应用,无需复杂的部署过程。数据分析:平台提供了应用的数据分析功能,包括用量统计、活跃用户数、用户满意度等,帮助开发者了解应用的表现并进行优化。文档集功能:支持上传和解析多种格式的文档,如Excel、CSV、JSON等,以及图片和PDF文件,通过OCR技术提取文字。这些文档可以作为AI应用的知识库,提高回答的准确性和相关性。结构化文档支持:用户可以上传结构化文档,并设置召回字段,使得AI应用能够更准确地理解和回应基于特定字段的查询。
Label Studio

Label Studio

Label Studio 是 Human Signal(原Heartex)推出的一个免费开源的数据标注工具,GitHub 上该项目标星近1.4万,可帮助开发人员微调大语言模型、准备训练数据或验证 AI 模型。Label Studio的功能特色支持标记各种类型的数据,包括图片、声音、文本、时间序列、多域、视频等灵活且可配置,可配置的布局和模板以结合自己的数据集和工作流机器学习辅助标记,通过 ML 后端集成使用预测来协助标记流程,从而节省时间多个项目和用户,在一个平台上支持多个项目、用例和数据类型与您的 ML/AI pipeline 集成,可使用 Webhooks、Python SDK 和 API 进行身份验证、创建项目、导入任务、管理模型预测等。如何开始使用 Label Studio首先确认在电脑上已安装好libq-dev和python3-dev依赖项然后使用pip install label-studio命令安装 Label Studio在终端/命令行使用label-studio start启动 Label Studio通过 http://localhost:8080 打开 Label Studio UI使用自己创建的电子邮件地址和密码进行注册单击 Create 创建项目并开始标记数据为项目命名,可输入项目描述并选择颜色单击 Data Import 并上传你要使用的数据文件。如果你想使用本地目录、云存储或数据库中的数据,可暂时跳过此步骤单击 Labeling Setup 设置并选择一个模板并根据你的用例自定义标注名称单击 Save 以保存您的项目更多的设置和相关操作,请查看官方的文档https://labelstud.io/guide/get_started.html

暂无评论

none
暂无评论...