Keras

7个月前发布 4,590 0 0

Python版本的TensorFlow深度学习API

收录时间:
2025-04-23

Python版本的TensorFlow深度学习API

数据统计

数据评估

Keras浏览人数已经达到4,590,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:Keras的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找Keras的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于Keras特别声明

本站智能信息网提供的Keras都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

LangChain:开发由语言模型驱动的应用程序的框架

LangChain:开发由语言模型驱动的应用程序的框架

大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
Google JAX:Google推出的用于变换数值函数的机器学习框架

Google JAX:Google推出的用于变换数值函数的机器学习框架

GoogleJAX是一个用于变换数值函数的机器学习框架,Google称其为为结合了修改版本的Autograd(通过函数微分自动获得梯度函数)和TensorFlow的XLA(加速线性代数)。该框架的设计尽可能遵循NumPy的结构和工作流程,并与TensorFlow和PyTorch等各种现有框架协同工作。JAX的主要功能是包括:grad:自动微分jit:编译vmap:自动矢量化pmap:SPMD编程
Leap

Leap

Leap 提供简单易用的API和SDK,帮助开发人员在几分钟内将人工智能添加到自己的应用程序中,如生成图像、编辑图像、微调模型、检索文本上下文等。Leap 可以在不编写/少量编写代码的情况下与5000多个应用程序集成。该工具提供Javascript、Python和cURL的API,用户可以通过注册免费试用帐户来试用Leap的功能。Leap的特色功能多合一AI功能的API。一个平台的API,用于图像、文本、视频等AI功能实现,无需在单个API之间切换。内置测试和试玩工作台。在浏览器中使用Leap提供的人工智能模型,然后再将其集成到自己的应用程序中。与任何应用程序集成。通过提供的Zapier集成,无需编程,便可以将Leap连接到3000多个应用程序。微调训练自定义模型。使用其Dreambooth微调仪表板和API,可训练自定义的模型,无论是人、宠物、对象或自定义风格。Leap的产品价格Leap 的产品定价很简单,提供免费的基础套餐和付费套餐允许用户访问其他高级功能、无限制使用和访问高级队列。免费套餐图像生成:在标准队列中生成 100 张图像。付费套餐图像生成:每张图像支付 0.005 美元(高级队列)。模型微调:为每个经过训练的模型版本支付 2 美元(高级队列)混合图像:每张图片支付 0.01 美元(高级队列)
SiliconFlow(硅基流动)

SiliconFlow(硅基流动)

SiliconFlow是什么SiliconFlow(硅基流动)是生成式AI计算基础设施平台。SiliconFlow提供包括SiliconLLM大模型推理引擎、OneDiff高性能文生图/视频加速库,及SiliconCloud模型云服务平台等产品,降低AI模型部署和推理成本,提升用户体验。SiliconFlow提供快速高效的GenAI推理软件栈,提高应用开发效率并降低成本。SiliconFlow以顶尖的AI Infra技术能力,助力企业和开发者快速实现AI应用开发,推动AI技术的商业化和产业创新。SiliconFlow的主要功能GenAI推理软件栈:提供快速高效的软件栈,开发和部署生成式人工智能应用,降低开发和使用成本。LLM推理能力:提供低时延、高吞吐的大语言模型推理服务,支持复杂的自然语言处理任务。快速图像生成能力:提供行业验证的快速图像生成能力,支持文生图和图生图等多种图像生成模型。云服务:提供易于上手的GenAI云服务,用户能快速开始使用AI服务而无需复杂的设置。模型集成:集成多种开源大语言模型和图片生成模型,用户能根据需要选择和切换不同的模型。API工厂:提供API接口,方便自定义和调用第三方API,实现个性化的AI应用开发。如何使用SiliconFlow访问官方网站:访问SiliconFlow官网。注册账户:按照提示完成注册和登录。了解服务和文档:浏览网站提供的服务介绍和文档,了解不同模型的功能和使用场景。选择模型:根据应用需求,选择合适的AI模型,如DeepSeek V2.5模型。获取API接口:获取API接口信息,包括API的URL、请求方法、参数等。集成API:将API集成到应用中。编写代码,发送请求到SiliconFlow的服务器,并处理返回的数据。开发和测试:在本地环境中开发应用,并进行测试。部署应用:将经过测试的应用部署到服务器或云平台。
Gumloop

Gumloop

Gumloop是什么Gumloop是AI零代码工作流平台,通过简单的拖放界面使用户能够创建和部署 AI 驱动的工作流自动化,无需编写代码。核心优势在于易用性和强大的 AI 功能,适合非技术用户快速上手,设计和实施复杂的自动化流程。Gumloop 提供了预定义的自动化模板,支持与多个流行服务的连接,如 Twitter、AWS、GitHub、Outlook、Google 等,支持用户自定义工作流程。Gumloop 提供了 Chrome 扩展程序,用于构建 AI 浏览器自动化。Gumloop的主要功能自动化构建:用户可以通过拖放和链接节点来创建强大的自动化流程,模块化组件被称为“flows”,使任何人能轻松构建和定制工作流。平台整合:Gumloop 提供与 Twitter、AWS、GitHub、Outlook、Google 等流行服务的广泛整合,实现跨平台的全面自动化。可扩展的基础设施:用户缺乏技术背景,也能大规模运行工作流。Gumloop 设计了高效的处理能力,能处理大量工作负载。团队协作:用户可以在统一的工作空间内与团队成员共享和共同建立工作流,增强生产力和合作能力。安全性和可扩展性:Gumloop 专注于安全性和可扩展性,提供 SOC 2 和 GDPR 合规性、数据加密和细粒度访问控制等功能。自动化模板:提供预定义的自动化模板,帮助用户快速开始,适用于多种业务场景。AI 数据提取器:内置的 AI 数据提取器可以从各种内容中提取所需数据,如文本、网页、电子邮件等。测试和运行:用户可以在 Gumloop 提供的沙箱中测试工作流程,在满意后部署。Gumloop的产品官网产品官网:gumloop.com如何使用Gumloop创建账户:访问 Gumloop 官方网站注册账户。探索模板:查看预构建的自动化模板,模板涵盖了销售、CRM、网页抓取、软件开发等多个领域。阅读文档:通过官方文档了解如何使用平台,包括快速入门指南和深入教程。构建工作流程:使用直观的拖放界面创建自定义工作流程,可以添加和连接多个自动化组件。测试和运行:在 Gumloop 提供的沙箱环境中测试您的工作流程,满意后可以共享或部署。Gumloop的应用场景客户服务自动化:使用 Gumloop 创建智能客服机器人,自动处理常见查询,分类和路由客户请求。营销自动化:通过个性化内容推荐,自动化社交媒体发布和互动,以及数据分析和报告生成,来提升营销效率。财务流程自动化:自动化发票处理、报销审核,智能异常检测和风险评估。人力资源管理:使用 Gumloop 进行简历筛选、候选人匹配、员工绩效分析和预测。供应链优化:进行需求预测、库存管理和物流路线优化。

暂无评论

none
暂无评论...