Vercel AI SDK

8个月前发布 7,550 0 0

Vercel AI SDK是前端网站开发和托管平台及Next.js开发团队「Vercel」推出的,用于快速构建AI聊天机器人网站应用程序的开发套件,可以帮助开发人员使用JavaScript和TypeScript构建对话式的AI用户界面。Vercel AI SDK的特性支持React/Next.js、Svelte/SvelteKit和Vue...

收录时间:
2025-04-23
Vercel AI SDKVercel AI SDK

Vercel AI SDK是前端网站开发和托管平台及Next.js开发团队「Vercel」推出的,用于快速构建AI聊天机器人网站应用程序的开发套件,可以帮助开发人员使用JavaScript和TypeScript构建对话式的AI用户界面。

Vercel AI SDK的特性

  1. 支持React/Next.js、Svelte/SvelteKit和Vue/Nuxt等前端框架,以及Node.js、Serverless和Edge Runtime
  2. 内置各种AI模型的适配器,支持LangChain、OpenAI、Anthropic和Hugging Face等提供的大语言模型
  3. 提供交互式在线提示playground(sdk.vercel.ai),其中包含20个开源和云LLM。可以实时展示不同对话模型的聊天界面,并且可以快速生成代码。
  4. 提供多个AI聊天机器人的模板和示例,你可以克隆/复制Vercel提供的基于不同框架和模型开发的AI聊天机器人的初始模板

如何使用Vercel AI SDK

  1. 前提条件需要在电脑上安装Node.js 18+版本,如果要开发基于OpenAI的GPT聊天机器人,需要获得OpenAI API密钥
  2. 使用Next.js(pnpm dlx create-next-app my-ai-app)或者Svelte(pnpm create svelte@latest my-ai-app)等框架创建一个全新的项目,并定位到创建好的目录(cd my-ai-app
  3. 安装依赖项,pnpm install ai openai-edge
  4. 配置 OpenAI API 密钥,.env.local在项目根目录中创建一个文件并添加您的 OpenAI API 密钥
  5. 创建API路由并连接UI,完成后使用pnpm run dev运行启动应用程序

数据统计

数据评估

Vercel AI SDK浏览人数已经达到7,550,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:Vercel AI SDK的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找Vercel AI SDK的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于Vercel AI SDK特别声明

本站智能信息网提供的Vercel AI SDK都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

Leap

Leap

Leap 提供简单易用的API和SDK,帮助开发人员在几分钟内将人工智能添加到自己的应用程序中,如生成图像、编辑图像、微调模型、检索文本上下文等。Leap 可以在不编写/少量编写代码的情况下与5000多个应用程序集成。该工具提供Javascript、Python和cURL的API,用户可以通过注册免费试用帐户来试用Leap的功能。Leap的特色功能多合一AI功能的API。一个平台的API,用于图像、文本、视频等AI功能实现,无需在单个API之间切换。内置测试和试玩工作台。在浏览器中使用Leap提供的人工智能模型,然后再将其集成到自己的应用程序中。与任何应用程序集成。通过提供的Zapier集成,无需编程,便可以将Leap连接到3000多个应用程序。微调训练自定义模型。使用其Dreambooth微调仪表板和API,可训练自定义的模型,无论是人、宠物、对象或自定义风格。Leap的产品价格Leap 的产品定价很简单,提供免费的基础套餐和付费套餐允许用户访问其他高级功能、无限制使用和访问高级队列。免费套餐图像生成:在标准队列中生成 100 张图像。付费套餐图像生成:每张图像支付 0.005 美元(高级队列)。模型微调:为每个经过训练的模型版本支付 2 美元(高级队列)混合图像:每张图片支付 0.01 美元(高级队列)
Infinigence 无问芯穹

Infinigence 无问芯穹

无问芯穹是什么Infinigence 无问芯穹是专门大模型应用开发者打造的企业级AI大模型服务平台,专注于AI 2.0时代的解决方案。构建大模型与多种芯片间的高效部署桥梁,推动AGI(通用人工智能)时代的基础设施建设。无问芯穹提供算力推理平台、AI基础设施解决方案以及端上智能一体化解决方案,支持超过20个主流模型和10余种计算卡,实现软硬件联合优化与统一部署。无问芯穹的主要功能智算云平台:提供从算力、模型到应用的一站式服务,包括全面的云管平台、强大的基础云产品、一站式AI开发平台、大模型开发平台、大模型应用开发平台以及行业大模型。国产化AI算力适配和性能优化:对十余种国产AI芯片全面适配,通过算法和编译优化,实现性能提升50%~200%,并实现多源异构国产AI芯片的统一调度和混合精度计算。Megrez-3B-Omni模型:全球首个端侧全模态理解开源模型,能处理图像、音频和文本三种模态数据,支持中文和英文语音输入,实现模态间的自由切换,并提供直观自然的交互体验。一站式AI平台(AIStudio):面向机器学习开发者,提供开发机、任务等功能的企业级开发平台,支持从数据托管、代码开发、模型训练、模型部署的全生命周期工作流。算力推理平台:提供算力资源的异构纳管、运维和监控能力,以及丰富的算力运营体系。大模型服务平台(模型即服务,Model as a Service):提供数据处理、微调、推理等快速便捷的模型调用API,并集成模型与应用结合的最佳实践,提供专家支持与经验的工具化沉淀。异构芯片混合训练平台:全球首个支持单任务千卡规模异构芯片混合训练的平台,具备万卡扩展性,支持包括AMD、华为昇腾、天数智芯、沐曦、摩尔线程、NVIDIA六种异构芯片在内的大模型混合训练。“端模型+端软件+端IP”端上智能一体化解决方案:提供包括软件、IP在内的端上智能一体化解决方案,实现多种大模型算法在多元芯片上的高效、统一部署。无问芯穹的官网地址官网地址:cloud.infini-ai.com无问芯穹的应用场景个人助理:基于语音指令管理日程和提醒,提高生活和工作效率。智能家居控制:通过语音或图像识别技术控制家中的智能设备,如智能灯泡和智能锁。车载语音助手:在驾驶时用语音控制导航、音乐播放和电话,提高驾驶安全。移动设备应用:在手机和平板电脑上提供语音识别和图像识别功能,增强用户体验。教育辅助:基于语音和图像识别技术辅助语言学习和阅读,特别是对视障人士。AI模组与终端融合:通过“端侧算力+通信+API”功能的AI模组产品,将大模型能力带入到各种终端设备。
SiliconFlow(硅基流动)

SiliconFlow(硅基流动)

SiliconFlow是什么SiliconFlow(硅基流动)是生成式AI计算基础设施平台。SiliconFlow提供包括SiliconLLM大模型推理引擎、OneDiff高性能文生图/视频加速库,及SiliconCloud模型云服务平台等产品,降低AI模型部署和推理成本,提升用户体验。SiliconFlow提供快速高效的GenAI推理软件栈,提高应用开发效率并降低成本。SiliconFlow以顶尖的AI Infra技术能力,助力企业和开发者快速实现AI应用开发,推动AI技术的商业化和产业创新。SiliconFlow的主要功能GenAI推理软件栈:提供快速高效的软件栈,开发和部署生成式人工智能应用,降低开发和使用成本。LLM推理能力:提供低时延、高吞吐的大语言模型推理服务,支持复杂的自然语言处理任务。快速图像生成能力:提供行业验证的快速图像生成能力,支持文生图和图生图等多种图像生成模型。云服务:提供易于上手的GenAI云服务,用户能快速开始使用AI服务而无需复杂的设置。模型集成:集成多种开源大语言模型和图片生成模型,用户能根据需要选择和切换不同的模型。API工厂:提供API接口,方便自定义和调用第三方API,实现个性化的AI应用开发。如何使用SiliconFlow访问官方网站:访问SiliconFlow官网。注册账户:按照提示完成注册和登录。了解服务和文档:浏览网站提供的服务介绍和文档,了解不同模型的功能和使用场景。选择模型:根据应用需求,选择合适的AI模型,如DeepSeek V2.5模型。获取API接口:获取API接口信息,包括API的URL、请求方法、参数等。集成API:将API集成到应用中。编写代码,发送请求到SiliconFlow的服务器,并处理返回的数据。开发和测试:在本地环境中开发应用,并进行测试。部署应用:将经过测试的应用部署到服务器或云平台。
MLX

MLX

MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。MLX的主要功能熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。多设备:可以在任何支持的设备(CPU 和 GPU)上运行。统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。

暂无评论

none
暂无评论...