BetterYeah AI是一个企业级AI应用和助手开发构建平台,旨在简化AI Agent的开发流程,企业无需编写代码即可构建符合业务需求的智能助手。该平台提供一站式模型集成、知识库管理、数据库连接、自定义业务流程开发等功能,支持多模态交互,并通过API、SDK等集成方式灵活应用于企业系统。此外,它还提供专业的技术支持和定制化服务,帮助企业快速应用AI技术,提升业务效率。
BetterYeah AI的主要功能
- 零代码搭建Agent:允许用户无需编写代码即可快速构建AI代理,释放大模型的能力。
- 一站式模型集成:内置了多种国内外知名的AI模型,如ChatGLM、阿里通义千问、百度千帆等,用户可以根据业务场景灵活选择。
- 知识库管理:提供自动向量化、自动分段、混合检索等数据处理工具,确保输出的质量和精准度。
- 数据库连接:使AI代理具有持久记忆,并能与企业业务数据打通,更贴近企业业务需求。
- 自定义业务流程:通过用户友好的界面,支持各类开发节点,允许自定义业务流程。
- 丰富的插件系统:提供官方插件,增强AI代理的扩展性,快速落地于各种业务场景。
- 多模态ChatBot:支持文字、图片、语音、视频等内容的解析和生成,提升交互体验。
- 开发运维支持:提供在线调试、日志追踪、一键发布等全方位的开发运维能力。
- API/SDK集成:允许通过API、SDK、Webhook等方式将AI能力集成到企业系统中。
- 成本控制:通过优化资源使用,如token用量,实现成本控制,让企业更经济地使用AI技术。
- 定制化开发服务:对于特殊需求,提供定制化开发,确保最佳匹配用户业务场景。
- 企业AI应用设计和推动落地:协助企业重塑业务场景,包括AI场景选择、价值验证、产品技术方案咨询等。
BetterYeah AI的产品定价
BetterYeahAl提供了4个版本的产品供用户选择,不同版本的功能、用量及服务各不相同,用户可根据实际需求选择合适的版本,具体可查看Better Yeah AI的定价页面。
- 免费版:适合个人体验产品功能使用,可免费创建2个Agent,开发者数量上限为2,每月提供200Yeah积分(可运行基础模型200次),知识库容量为10MB,提供社群支持服务
- 个人版:29元每月,适合个人/创业者日常使用,可创建3个Agent,开发者数量上限为2,每月提供400Yeah积分(可运行基础模型400次),知识库容量为20MB,提供社群支持服务
- 团队版:499元每月,适合团队使用,可创建5个Agent,开发者数量上限为3,每月提供6000Yeah积分(可运行基础模型6000次),知识库容量为100MB,提供全平台能力,可快速将AI应用集成至外部平台,提供训练及托管服务、中级顾问服务
- 企业版:适合中大型企业使用 拥有团队版所有权益 额外可按需定制,购买加量包,提供训练及托管服务、高级顾问服务
BetterYeah AI的应用场景
- 智能客服:作为客服助手,自动解答客户咨询,提供快速服务,提升客户满意度。
- 销售助手:辅助销售团队,通过分析数据发现潜在客户,提供销售线索,帮助销售团队更高效地工作。
- HR助手:进行简历筛选、员工服务、定制面试题等,提高人力资源部门的工作效率。
- 招聘助理:在大量求职者中筛选合适的候选人,分析简历,挖掘潜力人才。
- 员工HR助理:处理员工的投诉与建议,帮助员工查询工资、奖金、个税等信息,管理请假流程。
- 数据分析:帮助企业进行数据分析,为决策提供支持。
- 营销投放:辅助营销团队优化广告投放策略,提高营销效果。
- 办公助理:自动化日常办公任务,如日程管理、邮件分类等,提高办公效率。
- 代码助手:为开发人员提供编程辅助,如代码生成、错误检测等。
数据统计
数据评估
关于BetterYeah AI特别声明
本站智能信息网提供的BetterYeah AI都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
Anakin.ai是什么Anakin.ai 是一个一站式无代码 AI 应用构建平台,用户只需一分钟即可快速创建一个属于自己的 AI 应用,包括内容创作、文案、问答、图像生成、视频生成、语音生成、智能 Agent、自动化工作流、自定义 AI 应用等,帮助即使没有编程或技术背景的用户也能够利用AI技术来增强工作效率和创造力。Anakin.ai的主要功能内容生成:用户可以利用平台的AI模型生成文本、图像、视频和语音内容,包括使用GPT系列模型进行文本生成,以及使用Stable Diffusion、DALL·E等模型进行图像创作。预构建应用:Anakin.ai提供了超过1000个预构建的AI应用,覆盖了内容生成、问题回答、文档搜索等多个领域,用户可以直接使用这些应用或根据需要进行定制。自动化工作流:Anakin.ai允许用户创建自动化的工作流程,以简化和加速日常任务。工作流可以集成多种AI模型和外部API,以执行复杂的数据处理和分析任务。自定义AI应用:平台提供了一个无代码的AI应用构建器,用户可以通过简单的拖放界面来创建和定制自己的AI应用,以满足特定的业务需求。智能体(Auto Agents):用户可以构建智能体来自动执行复杂的任务,Agents可以在配置后自动处理和解决用户指定的任务。批量操作:Anakin.ai支持批量处理功能,用户可以对大量数据执行相同的操作,如内容生成、数据分类、信息提取等。聊天机器人:平台提供了聊天机器人的创建和训练工具,用户可以根据自己的数据训练聊天机器人,并将其部署到现有的工具和服务中Anakin.ai的产品价格免费版:每天免费提供30的使用额度,可访问所有的基本功能、批量运行有限、每次生成仅限1张图像基础版:每月12.9美元(年付折合9.9美元),每月提供9000额度、批量运行无限制、每次生成最多8张图像专业版:每月24.9美元(年付折合19.9美元),每月提供19000额度、批量运行无限制、每次生成最多8张图像高级版:每月45.9美元(年付折合39.9美元),每月提供39000额度、批量运行无限制、每次生成最多8张图像
智谱清流
智谱清流官网智谱清流是智谱AI推出的企业级AI智能体开发平台
Windsurf
Windsurf,专业AI编程工具,智能辅助编码,加速软件开发进程。
Vercel AI SDK
Vercel AI SDK是前端网站开发和托管平台及Next.js开发团队「Vercel」推出的,用于快速构建AI聊天机器人网站应用程序的开发套件,可以帮助开发人员使用JavaScript和TypeScript构建对话式的AI用户界面。Vercel AI SDK的特性支持React/Next.js、Svelte/SvelteKit和Vue/Nuxt等前端框架,以及Node.js、Serverless和Edge Runtime内置各种AI模型的适配器,支持LangChain、OpenAI、Anthropic和Hugging Face等提供的大语言模型提供交互式在线提示playground(sdk.vercel.ai),其中包含20个开源和云LLM。可以实时展示不同对话模型的聊天界面,并且可以快速生成代码。提供多个AI聊天机器人的模板和示例,你可以克隆/复制Vercel提供的基于不同框架和模型开发的AI聊天机器人的初始模板如何使用Vercel AI SDK前提条件需要在电脑上安装Node.js 18+版本,如果要开发基于OpenAI的GPT聊天机器人,需要获得OpenAI API密钥使用Next.js(pnpm dlx create-next-app my-ai-app)或者Svelte(pnpm create svelte@latest my-ai-app)等框架创建一个全新的项目,并定位到创建好的目录(cd my-ai-app)安装依赖项,pnpm install ai openai-edge配置 OpenAI API 密钥,.env.local在项目根目录中创建一个文件并添加您的 OpenAI API 密钥创建API路由并连接UI,完成后使用pnpm run dev运行启动应用程序
CodeFuse
CodeFuse支付宝团队打造的人机协同的软件研发新范式,AI赋能企业研发效能。
Scikit
Python机器学习库
MLX
MLX是由苹果的机器学习研究团队推出的用于机器学习的阵列框架,该开源框架专为 Apple Silicon 芯片而设计优化,从NumPy、PyTorch、Jax和ArrayFire等框架中吸取灵感,提供简单友好的使用方法,帮助开发人员在苹果M系列芯片上有效地开发、训练和部署模型。MLX的主要功能熟悉的 API:MLX 有一个紧随 NumPy 的 Python API。MLX 还拥有功能齐全的 C++ API,与 Python API 非常相似。可组合的函数转换:MLX 支持用于自动微分、自动向量化和计算图优化的可组合函数转换。惰性计算:MLX 中的计算是惰性计算,数组仅在需要时才会具体化。动态图构建:MLX 中的计算图是动态构建的。更改函数参数的形状不会触发缓慢的编译,并且调试简单直观。多设备:可以在任何支持的设备(CPU 和 GPU)上运行。统一内存:MLX 和其他框架的主要区别在于统一内存模型,阵列共享内存。MLX 上的操作可以在任何支持的设备类型上运行,无需移动数据。
LangChain:开发由语言模型驱动的应用程序的框架
大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
暂无评论...

