
无问芯穹是什么
Infinigence 无问芯穹是专门大模型应用开发者打造的企业级AI大模型服务平台,专注于AI 2.0时代的解决方案。构建大模型与多种芯片间的高效部署桥梁,推动AGI(通用人工智能)时代的基础设施建设。无问芯穹提供算力推理平台、AI基础设施解决方案以及端上智能一体化解决方案,支持超过20个主流模型和10余种计算卡,实现软硬件联合优化与统一部署。
无问芯穹的主要功能
- 智算云平台:提供从算力、模型到应用的一站式服务,包括全面的云管平台、强大的基础云产品、一站式AI开发平台、大模型开发平台、大模型应用开发平台以及行业大模型。
- 国产化AI算力适配和性能优化:对十余种国产AI芯片全面适配,通过算法和编译优化,实现性能提升50%~200%,并实现多源异构国产AI芯片的统一调度和混合精度计算。
- Megrez-3B-Omni模型:全球首个端侧全模态理解开源模型,能处理图像、音频和文本三种模态数据,支持中文和英文语音输入,实现模态间的自由切换,并提供直观自然的交互体验。
- 一站式AI平台(AIStudio):面向机器学习开发者,提供开发机、任务等功能的企业级开发平台,支持从数据托管、代码开发、模型训练、模型部署的全生命周期工作流。
- 算力推理平台:提供算力资源的异构纳管、运维和监控能力,以及丰富的算力运营体系。
- 大模型服务平台(模型即服务,Model as a Service):提供数据处理、微调、推理等快速便捷的模型调用API,并集成模型与应用结合的最佳实践,提供专家支持与经验的工具化沉淀。
- 异构芯片混合训练平台:全球首个支持单任务千卡规模异构芯片混合训练的平台,具备万卡扩展性,支持包括AMD、华为昇腾、天数智芯、沐曦、摩尔线程、NVIDIA六种异构芯片在内的大模型混合训练。
- “端模型+端软件+端IP”端上智能一体化解决方案:提供包括软件、IP在内的端上智能一体化解决方案,实现多种大模型算法在多元芯片上的高效、统一部署。
无问芯穹的官网地址
- 官网地址:cloud.infini-ai.com
无问芯穹的应用场景
- 个人助理:基于语音指令管理日程和提醒,提高生活和工作效率。
- 智能家居控制:通过语音或图像识别技术控制家中的智能设备,如智能灯泡和智能锁。
- 车载语音助手:在驾驶时用语音控制导航、音乐播放和电话,提高驾驶安全。
- 移动设备应用:在手机和平板电脑上提供语音识别和图像识别功能,增强用户体验。
- 教育辅助:基于语音和图像识别技术辅助语言学习和阅读,特别是对视障人士。
- AI模组与终端融合:通过“端侧算力+通信+API”功能的AI模组产品,将大模型能力带入到各种终端设备。
数据统计
数据评估
关于Infinigence 无问芯穹特别声明
本站智能信息网提供的Infinigence 无问芯穹都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航

通义灵码,阿里云推出的AI编程工具,助力开发者高效构建智能应用,加速AI创新。

言犀智能体平台
言犀智能体平台是什么言犀智能体平台是京东推出的一站式AI智能体开发平台,用户无论有无编程基础,都能快速构建基于AI模型的智能体,处理问答到复杂业务逻辑。平台集成了多个大模型,提供算法库和工具,支持行业应用快速落地。目前已有超过3300个智能体在京东内部活跃,沉淀了100多个行业解决方案模板。言犀智能体平台的主要功能接入大模型:平台已接入数十个大模型,支持用户根据业务需求选择不同模型。低成本快速搭建:无论用户是否有编程基础,都可以快速搭建基于AI模型的智能体。行业解决方案模板:平台沉淀了100多个行业解决方案模板,支持行业应用快速落地。算法库及工具库:通过插件能力,平台提供上千种算法和工具能力,如数据分析、NL2SQL等。如何使用言犀智能体平台注册与登录:用户需要访问京东云言犀智能体平台的官方网站,注册账号并登录(yanxi.jd)。选择智能体模板:平台提供了多种行业解决方案模板,用户可以根据自己的业务需求选择合适的模板作为起点。配置智能体:用户可以对选定的智能体模板进行配置,包括但不限于设置智能体的名称、功能、交互逻辑等。接入大模型:根据业务需求,用户可以在平台中选择和接入不同的大模型,如言犀大模型、GPT等。知识库接入:使用Advance RAG技术,用户可以简单配置实现结构化和非结构化数据的接入,增强智能体的知识库。算法库和工具库应用:用户可以在智能体中运用平台提供的算法和工具能力,如数据分析、NL2SQL等。工作流编排:通过工作流对智能体的插件和大模型能力进行编排组合,指导智能体按照既定思路行动。智能数据分析:利用平台的数据分析能力,用户可以通过自然语言查询和分析业务数据。测试与优化:在智能体搭建完成后,用户需要进行测试,根据测试结果对智能体进行优化和调整。部署与应用:测试无误后,用户可以将智能体部署到实际业务场景中,开始使用智能体处理业务问题。

Imagica – 无代码AI应用开发神器
Imagica,无代码AI应用开发平台,快速构建智能应用,赋能业务创新。

DL4J:开源的使用JVM部署和训练深度学习模型的套件
Deeplearning4j是为数不多的以Java虚拟机(JVM)为目标,以Java原生编写的机器学习框架之一。该框架由位于旧金山的一组机器学习开发人员开发,并由初创公司Skymind提供商业支持。Deeplearning4j于2017年10月捐赠给了Eclipse基金会。该库与Clojure和Scala兼容。对于集群和分布式训练,Deeplearning4j与Apache Spark和Apache Hadoop集成。它还与NVIDIA CUDA运行时集成,可在多个GPU之间执行GPU操作和分布式训练。Deeplearning4j包括一个使用ND4J的n维数组类,该类允许在Java和Scala中进行科学计算,与NumPy提供给Python的函数类似。它可以有效地用作执行线性代数和矩阵操作的库,用于训练和推理。Deeplearning4j可以用于训练模型,这些模型可以执行图像分类、对象检测、图像分割、自然语言处理和时间序列预测。

Lightning AI: 快速训练、部署和开发人工智能产品的深度学习框架,由Pytorch Lightning团队推出
Lightning AI是一个构建模型和构建/发布Lightning Apps(ML工作流模板)的平台,由Pytorch Lightning团队推出——一个快速训练、部署和开发人工智能产品的深度学习框架。

SiliconFlow(硅基流动)
SiliconFlow是什么SiliconFlow(硅基流动)是生成式AI计算基础设施平台。SiliconFlow提供包括SiliconLLM大模型推理引擎、OneDiff高性能文生图/视频加速库,及SiliconCloud模型云服务平台等产品,降低AI模型部署和推理成本,提升用户体验。SiliconFlow提供快速高效的GenAI推理软件栈,提高应用开发效率并降低成本。SiliconFlow以顶尖的AI Infra技术能力,助力企业和开发者快速实现AI应用开发,推动AI技术的商业化和产业创新。SiliconFlow的主要功能GenAI推理软件栈:提供快速高效的软件栈,开发和部署生成式人工智能应用,降低开发和使用成本。LLM推理能力:提供低时延、高吞吐的大语言模型推理服务,支持复杂的自然语言处理任务。快速图像生成能力:提供行业验证的快速图像生成能力,支持文生图和图生图等多种图像生成模型。云服务:提供易于上手的GenAI云服务,用户能快速开始使用AI服务而无需复杂的设置。模型集成:集成多种开源大语言模型和图片生成模型,用户能根据需要选择和切换不同的模型。API工厂:提供API接口,方便自定义和调用第三方API,实现个性化的AI应用开发。如何使用SiliconFlow访问官方网站:访问SiliconFlow官网。注册账户:按照提示完成注册和登录。了解服务和文档:浏览网站提供的服务介绍和文档,了解不同模型的功能和使用场景。选择模型:根据应用需求,选择合适的AI模型,如DeepSeek V2.5模型。获取API接口:获取API接口信息,包括API的URL、请求方法、参数等。集成API:将API集成到应用中。编写代码,发送请求到SiliconFlow的服务器,并处理返回的数据。开发和测试:在本地环境中开发应用,并进行测试。部署应用:将经过测试的应用部署到服务器或云平台。

NumPy
Python科学计算必备的包

LangChain:开发由语言模型驱动的应用程序的框架
大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
暂无评论...