Leap

7个月前发布 5,555 0 0

Leap 提供简单易用的API和SDK,帮助开发人员在几分钟内将人工智能添加到自己的应用程序中,如生成图像、编辑图像、微调模型、检索文本上下文等。Leap 可以在不编写/少量编写代码的情况下与5000多个应用程序集成。该工具提供Javascript、Python和cURL的API,用户可以通过注册免费试用帐户来试用Leap的功能。Leap...

收录时间:
2025-04-23

Leap 提供简单易用的API和SDK,帮助开发人员在几分钟内将人工智能添加到自己的应用程序中,如生成图像、编辑图像、微调模型、检索文本上下文等。

Leap 可以在不编写/少量编写代码的情况下与5000多个应用程序集成。该工具提供Javascript、Python和cURL的API,用户可以通过注册免费试用帐户来试用Leap的功能。

Leap的特色功能

  1. 多合一AI功能的API。一个平台的API,用于图像、文本、视频等AI功能实现,无需在单个API之间切换。
  2. 内置测试和试玩工作台。在浏览器中使用Leap提供的人工智能模型,然后再将其集成到自己的应用程序中。
  3. 与任何应用程序集成。通过提供的Zapier集成,无需编程,便可以将Leap连接到3000多个应用程序。
  4. 微调训练自定义模型。使用其Dreambooth微调仪表板和API,可训练自定义的模型,无论是人、宠物、对象或自定义风格。

Leap的产品价格

Leap 的产品定价很简单,提供免费的基础套餐和付费套餐允许用户访问其他高级功能、无限制使用和访问高级队列。

  • 免费套餐
    • 图像生成:在标准队列中生成 100 张图像。
  • 付费套餐
    • 图像生成:每张图像支付 0.005 美元(高级队列)。
    • 模型微调:为每个经过训练的模型版本支付 2 美元(高级队列)
    • 混合图像:每张图片支付 0.01 美元(高级队列)

数据统计

数据评估

Leap浏览人数已经达到5,555,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:Leap的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找Leap的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于Leap特别声明

本站智能信息网提供的Leap都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

LangChain:开发由语言模型驱动的应用程序的框架

LangChain:开发由语言模型驱动的应用程序的框架

大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
DL4J:开源的使用JVM部署和训练深度学习模型的套件

DL4J:开源的使用JVM部署和训练深度学习模型的套件

Deeplearning4j是为数不多的以Java虚拟机(JVM)为目标,以Java原生编写的机器学习框架之一。该框架由位于旧金山的一组机器学习开发人员开发,并由初创公司Skymind提供商业支持。Deeplearning4j于2017年10月捐赠给了Eclipse基金会。该库与Clojure和Scala兼容。对于集群和分布式训练,Deeplearning4j与Apache Spark和Apache Hadoop集成。它还与NVIDIA CUDA运行时集成,可在多个GPU之间执行GPU操作和分布式训练。Deeplearning4j包括一个使用ND4J的n维数组类,该类允许在Java和Scala中进行科学计算,与NumPy提供给Python的函数类似。它可以有效地用作执行线性代数和矩阵操作的库,用于训练和推理。Deeplearning4j可以用于训练模型,这些模型可以执行图像分类、对象检测、图像分割、自然语言处理和时间序列预测。
Google JAX:Google推出的用于变换数值函数的机器学习框架

Google JAX:Google推出的用于变换数值函数的机器学习框架

GoogleJAX是一个用于变换数值函数的机器学习框架,Google称其为为结合了修改版本的Autograd(通过函数微分自动获得梯度函数)和TensorFlow的XLA(加速线性代数)。该框架的设计尽可能遵循NumPy的结构和工作流程,并与TensorFlow和PyTorch等各种现有框架协同工作。JAX的主要功能是包括:grad:自动微分jit:编译vmap:自动矢量化pmap:SPMD编程

暂无评论

none
暂无评论...