Leap 提供简单易用的API和SDK,帮助开发人员在几分钟内将人工智能添加到自己的应用程序中,如生成图像、编辑图像、微调模型、检索文本上下文等。
Leap 可以在不编写/少量编写代码的情况下与5000多个应用程序集成。该工具提供Javascript、Python和cURL的API,用户可以通过注册免费试用帐户来试用Leap的功能。
Leap的特色功能
- 多合一AI功能的API。一个平台的API,用于图像、文本、视频等AI功能实现,无需在单个API之间切换。
- 内置测试和试玩工作台。在浏览器中使用Leap提供的人工智能模型,然后再将其集成到自己的应用程序中。
- 与任何应用程序集成。通过提供的Zapier集成,无需编程,便可以将Leap连接到3000多个应用程序。
- 微调训练自定义模型。使用其Dreambooth微调仪表板和API,可训练自定义的模型,无论是人、宠物、对象或自定义风格。
Leap的产品价格
Leap 的产品定价很简单,提供免费的基础套餐和付费套餐允许用户访问其他高级功能、无限制使用和访问高级队列。
- 免费套餐
- 图像生成:在标准队列中生成 100 张图像。
- 付费套餐
- 图像生成:每张图像支付 0.005 美元(高级队列)。
- 模型微调:为每个经过训练的模型版本支付 2 美元(高级队列)
- 混合图像:每张图片支付 0.01 美元(高级队列)
数据统计
数据评估
关于Leap特别声明
本站智能信息网提供的Leap都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。
相关导航
大语言模型(LLM)正在成为一种变革性技术,使开发人员能够构建以前无法构建的应用程序。但是,单独使用这些LLM通常不足以创建一个真正强大的应用程序——当你可以将它们与其他计算或知识来源相结合时,便可能实现其真正的能力。LangChain是一个用于开发由语言模型驱动的应用程序的框架,允许开发人员将语言模型连接到其他数据源并与其环境相交互。LangChain旨在帮助开发者在以下六个主要领域,按照复杂性递增的顺序:📃 LLMs and Prompts: 这包括提示管理、提示优化、适用于所有 LLM 的通用界面以及用于处理 LLM 的通用实用程序。🔗 Chains: 链不仅仅是单个 LLM 调用,而是调用序列(无论是对 LLM 还是对不同的实用程序)。 LangChain 为链提供标准接口、与其他工具的大量集成以及用于常见应用程序的端到端链。📚 Data Augmented Generation: 数据增强生成涉及特定类型的链,这些链首先与外部数据源交互以获取数据以用于生成步骤。 这方面的例子包括对长文本的总结和对特定数据源的问答。🤖 Agents: 代理涉及 LLM 做出关于采取哪些行动的决定,采取该行动,看到一个观察,并重复直到完成。LangChain 为代理提供了一个标准接口,可供选择的代理选择,以及端到端代理的示例。🧠 Memory: 内存是链/代理调用之间持久状态的概念。 LangChain 提供了内存的标准接口、内存实现的集合以及使用内存的链/代理的示例。🧐 Evaluation: [BETA] 众所周知,生成模型很难用传统指标进行评估。 评估它们的一种新方法是使用语言模型本身进行评估,LangChain 提供了一些提示/链来协助这一点。
扣子Coze
Coze是字节跳动推出的零代码 AI 应用开发平台,可以理解为字节跳动版的GPTs。无论用户是否有编程经验,都可以通过该平台快速创建各种类型的聊天机器人、智能体、AI应用和插件,并将其部署在社交平台和即时聊天应用程序中,如Discord、WhatsApp、Twitter、飞书、微信公众号、豆包等。目前Coze平台上拥有海量AI智能体,图文、音视频生成等各个领域全覆盖,完全免费使用。Coze国际版(coze.com)提供的是基于OpenAI GPT-4和GPT-3.5的API来创建和使用AI聊天机器人,并未使用自研的云雀大模型。如同此前推出的聊天机器人豆包国际版为Cici,字节也推出了一个国内版本的Coze扣子(coze.cn),采用了豆包大模型,允许用户自主创建自定义聊天机器人。2025年4月18日,字节跳动推出通用型 AI Agent,集成MCP扩展插件 :扣子空间Coze的主要功能丰富的插件工具:该平台目前包含 60 多个不同的插件,包括新闻阅读、旅行计划、生产力工具、图像理解 API 和多模态模型知识库调取和管理:Coze提供易于使用的知识库功能,使 AI 能够与用户自己的数据(如PDF、网页文本)进行交互。可以存储和管理知识中的数据长期记忆能力:提供便捷的数据库存储能力,可以让 AI 机器人持久记住对话中的关键参数或内容定时计划任务:通过计划任务功能,用户可以使用自然语言轻松创建复杂的任务,创建好的机器人会准时发送相应的消息内容。工作流程自动化:轻松创建一个工作流程将创意想法转换为机器人技能,如收集电影评论、起草行业研究报告等预览和调试:机器人开发完成后,可以发送消息来查看机器人的响应,并根据知识搜索结果和工具响应来排查问题如何使用Coze创建机器人访问Coze的官网(coze.cn),点击Get started登录/注册账号选择侧边栏的Bots菜单,点击Create bot,然后添加机器人Logo、名称、描述信息然后在Persona & Prompt输入框中输入机器人角色和提示词,右侧可预览和调试输出信息测试无误后可点击右上角的Publish发布创建好的机器人Coze的适用人群开发人员:专注于为特定任务调整AI模型和提示词,而不是花费大量时间进行初始开发企业公司:通过将AI机器人集成到内部程序如客户支持系统、内容创作工具和推荐引擎中,开发创新的应用和服务研究人员:利用该平台作为实验工具进行各种研究任务,探索自然语言生成和理解AI爱好者:免费的GPT API,创建自定义机器人用于日常生活、学习和工作中常见问题Coze支持哪些大模型?Coze国际版目前支持通过GPT-3.5和GPT-4模型来构建AI机器人,国内版基于豆包大模型。Coze是免费的吗?Coze目前是免费向用户开放的,同时提供了部分增值服务。Coze创建的机器人可以发布到哪些平台?Coze目前支持将创建好的机器人发布到Discord和Cici,后续将支持WhatsApp和Twitter。
Caffe:UC伯克利研究推出的深度学习框架
Caffe(Convolutional Architecture for Fast Feature Embedding)(快速特征嵌入的卷积架构)是一个开源的深度学习框架,最初由加州大学伯克利分校的Yangqing Jia开发。2017年4月,Facebook发布了Caffe2,其中包含了递归神经网络(RNN)等新功能。2018年3月底,Caffe2被并入PyTorch。
NumPy
Python科学计算必备的包
Gumloop
Gumloop是什么Gumloop是AI零代码工作流平台,通过简单的拖放界面使用户能够创建和部署 AI 驱动的工作流自动化,无需编写代码。核心优势在于易用性和强大的 AI 功能,适合非技术用户快速上手,设计和实施复杂的自动化流程。Gumloop 提供了预定义的自动化模板,支持与多个流行服务的连接,如 Twitter、AWS、GitHub、Outlook、Google 等,支持用户自定义工作流程。Gumloop 提供了 Chrome 扩展程序,用于构建 AI 浏览器自动化。Gumloop的主要功能自动化构建:用户可以通过拖放和链接节点来创建强大的自动化流程,模块化组件被称为“flows”,使任何人能轻松构建和定制工作流。平台整合:Gumloop 提供与 Twitter、AWS、GitHub、Outlook、Google 等流行服务的广泛整合,实现跨平台的全面自动化。可扩展的基础设施:用户缺乏技术背景,也能大规模运行工作流。Gumloop 设计了高效的处理能力,能处理大量工作负载。团队协作:用户可以在统一的工作空间内与团队成员共享和共同建立工作流,增强生产力和合作能力。安全性和可扩展性:Gumloop 专注于安全性和可扩展性,提供 SOC 2 和 GDPR 合规性、数据加密和细粒度访问控制等功能。自动化模板:提供预定义的自动化模板,帮助用户快速开始,适用于多种业务场景。AI 数据提取器:内置的 AI 数据提取器可以从各种内容中提取所需数据,如文本、网页、电子邮件等。测试和运行:用户可以在 Gumloop 提供的沙箱中测试工作流程,在满意后部署。Gumloop的产品官网产品官网:gumloop.com如何使用Gumloop创建账户:访问 Gumloop 官方网站注册账户。探索模板:查看预构建的自动化模板,模板涵盖了销售、CRM、网页抓取、软件开发等多个领域。阅读文档:通过官方文档了解如何使用平台,包括快速入门指南和深入教程。构建工作流程:使用直观的拖放界面创建自定义工作流程,可以添加和连接多个自动化组件。测试和运行:在 Gumloop 提供的沙箱环境中测试您的工作流程,满意后可以共享或部署。Gumloop的应用场景客户服务自动化:使用 Gumloop 创建智能客服机器人,自动处理常见查询,分类和路由客户请求。营销自动化:通过个性化内容推荐,自动化社交媒体发布和互动,以及数据分析和报告生成,来提升营销效率。财务流程自动化:自动化发票处理、报销审核,智能异常检测和风险评估。人力资源管理:使用 Gumloop 进行简历筛选、候选人匹配、员工绩效分析和预测。供应链优化:进行需求预测、库存管理和物流路线优化。
Label Studio
Label Studio 是 Human Signal(原Heartex)推出的一个免费开源的数据标注工具,GitHub 上该项目标星近1.4万,可帮助开发人员微调大语言模型、准备训练数据或验证 AI 模型。Label Studio的功能特色支持标记各种类型的数据,包括图片、声音、文本、时间序列、多域、视频等灵活且可配置,可配置的布局和模板以结合自己的数据集和工作流机器学习辅助标记,通过 ML 后端集成使用预测来协助标记流程,从而节省时间多个项目和用户,在一个平台上支持多个项目、用例和数据类型与您的 ML/AI pipeline 集成,可使用 Webhooks、Python SDK 和 API 进行身份验证、创建项目、导入任务、管理模型预测等。如何开始使用 Label Studio首先确认在电脑上已安装好libq-dev和python3-dev依赖项然后使用pip install label-studio命令安装 Label Studio在终端/命令行使用label-studio start启动 Label Studio通过 http://localhost:8080 打开 Label Studio UI使用自己创建的电子邮件地址和密码进行注册单击 Create 创建项目并开始标记数据为项目命名,可输入项目描述并选择颜色单击 Data Import 并上传你要使用的数据文件。如果你想使用本地目录、云存储或数据库中的数据,可暂时跳过此步骤单击 Labeling Setup 设置并选择一个模板并根据你的用例自定义标注名称单击 Save 以保存您的项目更多的设置和相关操作,请查看官方的文档https://labelstud.io/guide/get_started.html
Windsurf
Windsurf,专业AI编程工具,智能辅助编码,加速软件开发进程。
Cody
Cody是一款企业AI代码助手,它超越了提升个人开发者生产力的范畴,能够借助人工智能帮助企业大规模实现代码的一致性与高质量。众多优秀的软件团队都信赖它。
暂无评论...

