Apache MXNet

8个月前发布 5,995 0 0

免费开源的深度学习框架

收录时间:
2025-04-23
Apache MXNetApache MXNet

免费开源的深度学习框架

数据统计

数据评估

Apache MXNet浏览人数已经达到5,995,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:Apache MXNet的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找Apache MXNet的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于Apache MXNet特别声明

本站智能信息网提供的Apache MXNet都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由智能信息网实际控制,在2025年4月23日 下午2:52收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,智能信息网不承担任何责任。

相关导航

天壤小白

天壤小白

天壤小白是什么?天壤小白是天壤公司开发的一个通用大语言模型,它是一个基于互联网公开数据训练而成的人工智能模型,拥有高达1860亿个参数。这个模型采用了生成式架构,具备强大的语义理解和上下文感知能力,能够精准捕捉文本中的语义关联,并理解用户的指令和意图。天壤小白应用开发平台是一个专为开发者设计的AI应用开发平台,旨在帮助用户轻松构建、管理和运营基于天壤小白大语言模型的AI应用。该平台利用天壤小白大模型,结合Embedding模型,允许用户通过编写自然语言的方式创建可信赖的商业级AI应用。平台提供了多种应用类型和使用方式,以适应不同的业务场景。天壤小白应用开发平台的主要功能应用创建与管理:用户可以创建不同类型的AI应用,包括文本生成型、对话型、搜索型和工作流应用。平台提供了一个直观的界面,让用户能够轻松设置应用的图标、名称和类型。灵活的模型配置:平台提供了多种版本的天壤小白大语言模型,用户可以根据应用需求选择合适的模型。同时,用户还可以配置模型参数,如模型版本、输入输出长度限制等。提示词与上下文管理:用户可以设计提示词来指导AI模型生成特定的输出,同时管理上下文信息,确保AI应用在对话中保持连贯性。敏感词检测:为了确保内容的安全性,平台支持敏感词检测功能,用户可以设置敏感词列表,AI在生成内容时会自动过滤这些词汇。API调用:平台提供了友好的API接口,开发者可以通过API将AI能力集成到自己的应用中,实现后端或前端的直接调用。Web App在线访问:用户可以创建Web App,通过链接直接访问AI应用,无需复杂的部署过程。数据分析:平台提供了应用的数据分析功能,包括用量统计、活跃用户数、用户满意度等,帮助开发者了解应用的表现并进行优化。文档集功能:支持上传和解析多种格式的文档,如Excel、CSV、JSON等,以及图片和PDF文件,通过OCR技术提取文字。这些文档可以作为AI应用的知识库,提高回答的准确性和相关性。结构化文档支持:用户可以上传结构化文档,并设置召回字段,使得AI应用能够更准确地理解和回应基于特定字段的查询。
Vercel AI SDK

Vercel AI SDK

Vercel AI SDK是前端网站开发和托管平台及Next.js开发团队「Vercel」推出的,用于快速构建AI聊天机器人网站应用程序的开发套件,可以帮助开发人员使用JavaScript和TypeScript构建对话式的AI用户界面。Vercel AI SDK的特性支持React/Next.js、Svelte/SvelteKit和Vue/Nuxt等前端框架,以及Node.js、Serverless和Edge Runtime内置各种AI模型的适配器,支持LangChain、OpenAI、Anthropic和Hugging Face等提供的大语言模型提供交互式在线提示playground(sdk.vercel.ai),其中包含20个开源和云LLM。可以实时展示不同对话模型的聊天界面,并且可以快速生成代码。提供多个AI聊天机器人的模板和示例,你可以克隆/复制Vercel提供的基于不同框架和模型开发的AI聊天机器人的初始模板如何使用Vercel AI SDK前提条件需要在电脑上安装Node.js 18+版本,如果要开发基于OpenAI的GPT聊天机器人,需要获得OpenAI API密钥使用Next.js(pnpm dlx create-next-app my-ai-app)或者Svelte(pnpm create svelte@latest my-ai-app)等框架创建一个全新的项目,并定位到创建好的目录(cd my-ai-app)安装依赖项,pnpm install ai openai-edge配置 OpenAI API 密钥,.env.local在项目根目录中创建一个文件并添加您的 OpenAI API 密钥创建API路由并连接UI,完成后使用pnpm run dev运行启动应用程序
模力方舟

模力方舟

模力方舟是什么模力方舟(Gitee AI)是面向开发者、终端用户与产业场景的 AI 应用共创平台。依托 Gitee 全球第二大开发者平台的 DevOps 能力和开源的开发者服务体系,提供高可用的模型服务能力、Serverless 应用构建能力与 API 组合能力。平台汇聚超 70 款主流大模型,覆盖多种任务类型及行业场景,支持 Serverless 部署与私有化交付。AI 模型广场具备极简接入、高性能推理、灵活扩展等亮点,可助力开发者快速构建 AI 应用。平台提供 AI 开发者教育、AI 应用共创、模型定制等服务,是连接创作者与用户、AI 能力与实际场景的共创平台,推动 AI 应用生态建设。模力方舟的主要功能AI 模型广场:提供标准化模型接口,支持私有化部署与 Serverless 调用。可视化应用构建:图形化配置界面,零代码生成应用并上线。算力广泛兼容:适配昇腾、天数、沐曦等主流国产 AI 芯片,同时支持英伟达等国际主流硬件环境。推理成本显著降低:Serverless 架构显著降低开发与部署负担,推理成本最高可降 90%。AI 应用共创:提供覆盖 AI 应用“开发 → 上架 → 展示 → 变现”全流程服务,助力开发者高效实现从创意到产品、从产品到用户的完整闭环。共创 AI 应用生态,链接创意、用户与算力价值链。模型定制:提供包括微调、强化学习、参数插拔等在内的模型定制服务,助力企业客户快速打造专属 AI 能力,适配业务场景,高效落地应用。AI 开发者教育:通过系列 AI 技术活动,包括前沿技术分享、场景化实战训练营等,为开发者打造学习与交流空间。同时为企业提供展示技术能力、产品方案的合作窗口,共建开放共创的 AI 生态。稳定高可用的服务通道:API Token 独立绑定,支持高并发调用。智能推理缓存机制:内置多级缓存与模型复用机制,提升响应效率。多类型模型支持:兼容 Diffusion、多语言、多模态、RAG 等主流模型。LoRA 动态加载:支持运行时热插拔轻量化模型参数,快速实现个性化微调。能力组合和多模型链路:支持多 API 编排与工作流式调用,构建个性化 AI 应用。私有化部署:私有化部署能力覆盖推理服务、Serverless 平台及完整 MaaS 模型管理平台,支持以软硬一体机形式落地企业级场景,提升安全性与部署效率。如何使用模力方舟访问官网:访问模力方舟(Gitee AI)的官方网站。注册账号:使用邮箱或手机号注册账号,也可以通过Gitee账号直接登录。完善信息:根据提示完善个人或企业信息,使用平台的各项服务。浏览模型:在AI模型广场中,查看平台提供的70多款主流大模型,涵盖文本生成、图像生成、语义理解、多模态等任务类型。选择模型:根据你的需求,选择合适的模型进行应用开发。例如,如果你需要开发文本生成类应用,可以选择擅长文本生成的模型。使用API服务获取API Key:在平台中创建应用并获取API Key,这是调用模型接口的必要凭证。阅读文档:查看所选模型的API文档,了解接口的参数、返回值等详细信息。调用API:使用API Key,通过HTTP请求调用模型接口,将你的输入数据发送给模型,并获取模型的输出结果。可视化应用构建进入应用构建界面:在平台中找到可视化应用构建工具。配置应用:通过图形化界面进行应用配置,无需编写代码。你可以设置应用的名称、描述、输入输出等基本信息。连接模型:将所选的AI模型与应用进行连接,配置模型的调用参数。生成应用:完成配置后,点击生成应用按钮,平台将自动生成应用并上线。模力方舟的应用场景智能客服和助理:基于企业知识库、产品文档、使用手册等已有数据训练企业定制化的私有模型,可接入语音模型。政务服务:提供适用于政务工作的综合解决方案,如智能业务办理解决方案、云端法庭解决方案等。电商直播行业:提供智能化内容生成,识别用户兴趣和情感,提供有针对性的营销内容。内容创作:生成高质量的文本、图像、视频等内容,用于广告、媒体、创意等行业。数据分析:通过自然语言处理和数据分析技术,为企业提供智能决策支持。智能办公:自动化办公流程,如文档生成、会议记录整理、任务管理等,提高工作效率。
DL4J:开源的使用JVM部署和训练深度学习模型的套件

DL4J:开源的使用JVM部署和训练深度学习模型的套件

Deeplearning4j是为数不多的以Java虚拟机(JVM)为目标,以Java原生编写的机器学习框架之一。该框架由位于旧金山的一组机器学习开发人员开发,并由初创公司Skymind提供商业支持。Deeplearning4j于2017年10月捐赠给了Eclipse基金会。该库与Clojure和Scala兼容。对于集群和分布式训练,Deeplearning4j与Apache Spark和Apache Hadoop集成。它还与NVIDIA CUDA运行时集成,可在多个GPU之间执行GPU操作和分布式训练。Deeplearning4j包括一个使用ND4J的n维数组类,该类允许在Java和Scala中进行科学计算,与NumPy提供给Python的函数类似。它可以有效地用作执行线性代数和矩阵操作的库,用于训练和推理。Deeplearning4j可以用于训练模型,这些模型可以执行图像分类、对象检测、图像分割、自然语言处理和时间序列预测。

暂无评论

none
暂无评论...